ARITHMETIC SUMS WITH MULTIPLICATIVE COEFFICIENTS

Ke Gong
(Joint work with Professor Chaohua Jia)

0. Introduction

- Let $f(n)$ be a multiplicative function satisfying $|f(n)| \leq 1$.
- $\quad q \in \mathbb{Z}^{+}, a \in \mathbb{Z}, \operatorname{gcd}(a, q)=1$.
$-\quad e(x)=e^{2 i \pi x}, x \in \mathbb{R}$.
- $t(\cdot)$ be the divisor function.
- \bar{n} denotes the multiplicative inverse of $n: n \bar{n} \equiv 1(\bmod q)$.

Goal: Estimate nontrivially the weighted sums

$$
\begin{gathered}
\sum_{\substack{n \leq N \\
(a, q)=1}} f(n) e\left(\frac{a \bar{n}}{q}\right), \\
\sum_{n \leq N} f(x) \chi_{q}(n+a), \quad \chi \neq \chi_{0} \quad(\bmod q), \quad \underline{q \text { prime }},
\end{gathered}
$$

or more generally, for $t \geq 2, a_{1}, \ldots, a_{t}$ being pairwise distinct integers modulo a prime q, $\chi \neq \chi_{0}(\bmod q)$,

$$
\sum_{n \leq N} f(x) \chi_{q}\left(\left(n+a_{1}\right) \cdots\left(n+a_{t}\right)\right)
$$

Main tool: a modification of Kátai / Bourgain-Sarnak-Ziegler fintite version of Vinogradov's inequality (sieve).

1. Motivation \& Main Results

- f multiplicative function with $|f| \leq 1, \alpha \in \mathbb{R}$.

$$
S(\alpha)=\sum_{n \leq N} f(n) e(\alpha n) .
$$

[^0]Daboussi (1974): If

$$
\left|\alpha-\frac{a}{q}\right| \leq \frac{1}{q^{2}}, \quad(a, q)=1, \quad 3 \leq q \leq\left(\frac{N}{\log N}\right)^{1 / 2}
$$

then

$$
S(\alpha) \ll \frac{N}{\sqrt{\log \log q}}
$$

uniformly for f.
Montgomery \& Vaughan (1977): suppose $q \leq N,(a, q)=1$, then

$$
S\left(\frac{a}{q}\right) \ll N\left(\frac{1}{\log 2 N}+\frac{1}{\sqrt{\varphi(q)}}+\sqrt{\frac{q}{N}}\left(\log \frac{2 N}{q}\right)^{\frac{3}{2}}\right)
$$

uniformly for f. Assume GRH, they obtained: $\forall \chi \neq \chi_{0}(\bmod q), \forall N$,

$$
\sum_{n \leq N} \chi(n) \ll \sqrt{q} \log \log q
$$

- $f=\mu$ the Möbius function

Hajela, Pollington \& Smith (1998):

$$
M(a):=\sum_{\substack{n \leq N \\(a, q)=1}} \mu(n) e\left(\frac{a \bar{n}}{q}\right)<_{\varepsilon} N q^{\varepsilon}\left(\frac{(\log N)^{\frac{5}{2}}}{q^{\frac{1}{2}}}+\frac{q^{\frac{3}{10}}(\log N)^{\frac{11}{5}}}{N^{\frac{1}{5}}}\right)
$$

which gives a nontrivial estimate in the range $(\log N)^{5+10 \varepsilon} \ll q \ll N^{\frac{2}{3}-3 \varepsilon}$.
Wang \& Zheng (1998), Deng (1999) independently:

$$
M(a) \ll N \tau(q)\left(\frac{(\log N)^{\frac{5}{2}}}{q^{\frac{1}{2}}}+\frac{q^{\frac{1}{5}}(\log N)^{\frac{13}{5}}}{N^{\frac{1}{5}}}\right)
$$

for $(\log N)^{5+\varepsilon} \ll q \ll N^{1-\varepsilon}$. They remarked that, if assume GRH, we have

$$
M(a) \ll_{\varepsilon} q^{\frac{1}{2}} N^{\frac{1}{2}+\varepsilon}
$$

- For the case of von Mangoldt function, i.e. weighted sums over prime variables, there are many works, see Fouvry \& Michel (1998), Garaev (2010), Fouvry \& Shparlinski (2011), Baker (2012), ...

Theorem 1. Let $f(n)$ be a multiplicative function satisfying $|f(n)| \leq 1, q\left(\leq N^{2}\right)$ be a positive integer and a be an integer with $(a, q)=1$. Then

$$
\sum_{\substack{n \leq N \\(n, q)=1}} f(n) e\left(\frac{a \bar{n}}{q}\right) \ll \sqrt{\frac{\tau(q)}{q}} N \log \log (6 N)+q^{\frac{1}{4}+\frac{\varepsilon}{2}} N^{\frac{1}{2}}(\log (6 N))^{\frac{1}{2}}+\frac{N}{\sqrt{\log \log (6 N)}}
$$

where \bar{n} is the multiplicative inverse of n such that $\bar{n} n \equiv 1(\bmod q)$.
Remarks. 1) The estimate is nontrivial for $(\log \log (6 N))^{2+\varepsilon} \ll q \ll N^{2-5 \varepsilon}$.
2) If we use the result of Bourgain \& Garaev (2014), when q is prime, the upper bound in the range can be extended to $q \ll N^{A}$ for A being any given large constant.

Notation. We assume N is sufficiently large. Denote

$$
\begin{array}{lc}
d_{0}=\sqrt{\log \log (6 N)}, & D_{0}=e^{d_{0}}=\exp (\sqrt{\log \log (6 N)}), \\
d_{1}=d_{0}^{2}=\log \log (6 N), & D_{1}=e^{d_{1}}=\log (6 N) .
\end{array}
$$

Let p denote a prime number, and ε be a sufficiently small positive constant.

2. Sketch of the proof

Write

$$
\begin{aligned}
& S=\left\{n: 1 \leq n \leq N, n \text { has a prime factor in }\left[D_{0}, D_{1}\right)\right\} \\
& T=\left\{n: 1 \leq n \leq N, n \text { has no prime factor in }\left[D_{0}, D_{1}\right)\right\} .
\end{aligned}
$$

Lemma 1. We have

$$
|T| \ll \frac{N}{\sqrt{\log \log (6 N)}}
$$

Proof. Let

$$
P(N)=\prod_{D_{0} \leq p<D_{1}} p
$$

We have

$$
\begin{aligned}
|T| & =\sum_{\substack{n \leq N \\
(n, P(N))=1}} 1=\sum_{n \leq N} \sum_{d \mid(n, P(N))} \mu(d) \\
& =\sum_{d \mid P(N)} \mu(d) \sum_{\substack{n \leq N \\
d \mid n}} 1=\sum_{d \mid P(N)} \mu(d)\left(\frac{N}{d}+O(1)\right) \\
& =N \sum_{d \mid P(N)} \frac{\mu(d)}{d}+O\left(2^{\pi\left(D_{1}\right)}\right)=N \prod_{D_{0} \leq p<D_{1}}\left(1-\frac{1}{p}\right)+O\left(2^{\frac{2 D_{1}}{\log D_{1}}}\right) \\
& \ll N \frac{\log D_{0}}{\log D_{1}}+O\left(2^{2 \frac{\log (6 N)}{\log \log (6 N)}}\right) \ll \frac{N}{\sqrt{\log \log (6 N)}} .
\end{aligned}
$$

By Lemma 1, we have

$$
\sum_{\substack{n \leq N \\(n, q)=1}} f(n) e\left(\frac{a \bar{n}}{q}\right)=\sum_{\substack{n \leq N \\ n \in S \\(n, q)=1}} f(n) e\left(\frac{a \bar{n}}{q}\right)+O\left(\frac{N}{\sqrt{\log \log (6 N)}}\right)
$$

Let

$$
P_{r}=\left\{p: e^{r} \leq p<e^{r+1}\right\}, \quad \text { if }\left[d_{0}\right] \leq r \leq\left[d_{1}\right] .
$$

Then

$$
\bigcup_{r=\left[d_{0}\right]+1}^{\left[d_{1}\right]-1} P_{r} \subseteq\left\{p: D_{0} \leq p<D_{1}\right\} \subseteq \bigcup_{r=\left[d_{0}\right]}^{\left[d_{1}\right]} P_{r} .
$$

The prime number theorem yields

$$
\left|P_{r}\right| \ll \frac{e^{r}}{r}
$$

Write

$$
\begin{aligned}
& S^{\prime}=\left\{n: 1 \leq n \leq N, n \text { has a prime factor in } \bigcup_{r=\left[d_{0}\right]}^{\left[d_{1}\right]} P_{r}\right\}, \\
& S^{\prime \prime}=\left\{n: 1 \leq n \leq N, n \text { has a prime factor in } \bigcup_{r=\left[d_{0}\right]+1}^{\left[d_{1}\right]-1} P_{r}\right\} .
\end{aligned}
$$

Then

$$
S^{\prime \prime} \subseteq S \subseteq S^{\prime}
$$

Hence

$$
\begin{aligned}
\left|S \backslash S^{\prime \prime}\right| \leq\left|S^{\prime} \backslash S^{\prime \prime}\right| & \ll \sum_{p \in P_{\left[d_{0}\right]}} \frac{N}{p}+\sum_{p \in P_{\left[d_{1}\right]}} \frac{N}{p} \ll N\left(\frac{\left|P_{\left[d_{0}\right]}\right|}{e^{\left[d_{0}\right]}}+\frac{\left|P_{\left[d_{1}\right]}\right|}{e^{\left[d_{1}\right]}}\right) \\
& \ll \frac{N}{d_{0}}=\frac{N}{\sqrt{\log \log (6 N)}} .
\end{aligned}
$$

We note that

$$
\begin{aligned}
& \mid\{n: 1 \leq n \leq N, n \text { has at least two prime factors in the } \\
&\text { same one of } \left.P_{r}^{\prime} s\left(\left[d_{0}\right]+1 \leq r \leq\left[d_{1}\right]-1\right)\right\} \mid \\
& \ll \sum_{r=\left[d_{0}\right]+1}^{\left[d_{1}\right]-1} \sum_{p \in P_{r}} \sum_{p^{\prime} \in P_{r}} \frac{N}{p p^{\prime}} \ll N \sum_{r=\left[d_{0}\right]+1}^{\left[d_{1}\right]-1}\left(\frac{\left|P_{r}\right|}{e^{r}}\right)^{2} \\
& \ll N \sum_{r=\left[d_{0}\right]+1}^{\left[d_{1}\right]-1} \frac{1}{r^{2}} \ll \frac{N}{d_{0}}=\frac{N}{\sqrt{\log \log (6 N)}} .
\end{aligned}
$$

Therefore for

$$
\begin{aligned}
& S^{\prime \prime \prime}=\{n: 1 \leq n \leq N, n \text { has exact one prime factor } \\
&\text { in one of } \left.P_{r} \text { 's }\left(\left[d_{0}\right]+1 \leq r \leq\left[d_{1}\right]-1\right)\right\},
\end{aligned}
$$

we have $S^{\prime \prime \prime} \subseteq S^{\prime \prime}$ and $\left|S^{\prime \prime} \backslash S^{\prime \prime \prime}\right| \ll \frac{N}{\sqrt{\log \log (6 N)}}$.
The set $S^{\prime \prime \prime}$ can be decomposed as

$$
S^{\prime \prime \prime}=\bigcup_{r=\left[d_{0}\right]+1}^{\left[d_{1}\right]-1} S_{r}
$$

where

$$
\begin{gathered}
S_{r}=\left\{n: 1 \leq n \leq N, n \text { has exact one prime factor in } P_{r}\right. \\
\text { and has no prime factor in } \left.\bigcup_{i<r} P_{i}\right\} .
\end{gathered}
$$

By the prime number theorem, it is easy to see that each $S_{r}\left(r=\left[d_{0}\right]+1, \cdots,\left[d_{1}\right]-1\right)$ is not empty. The sets S_{r} are disjoint from each other. Every element $n \in S_{r}$ can be written in exact one way as $n=p y$, where $p \in P_{r}, y$ has no prime factor in $\bigcup_{i \leq r} P_{i}, p y \leq N$.

From the above discussion, we get

$$
\begin{aligned}
& \sum_{\substack{n \leq N \\
(n, q)=1}} f(n) e\left(\frac{a \bar{n}}{q}\right) \\
& =\sum_{\substack{n \leq N \\
n \in S^{\prime \prime \prime} \\
(n, q)=1}} f(n) e\left(\frac{a \bar{n}}{q}\right)+O\left(\frac{N}{\sqrt{\log \log (6 N)}}\right) \\
& =\sum_{r=\left[d_{0}\right]+1}^{\left[d_{1}\right]-1} \sum_{\substack{n \leq N \\
n \in S_{r} \\
(n, q)=1}} f(n) e\left(\frac{a \bar{n}}{q}\right)+O\left(\frac{N}{\sqrt{\log \log (6 N)}}\right) \\
& =\sum_{r=\left[d_{0}\right]+1}^{\left[d_{1}\right]-1} \sum_{\substack{y \leq \frac{N}{p} \\
e^{r} \leq p<e^{r+1} \\
(p, q)=1}} \quad y \text { has no prime factor in } \bigcup_{i \leq r} P_{i}(y, q)=1.0\left(\frac{a \bar{p} \bar{y}}{q}\right)+O\left(\frac{N}{\sqrt{\log \log (6 N)}}\right) \\
& =\sum_{r=\left[d_{0}\right]+1}^{\left[d_{1}\right]-1} \sum_{\substack{y \leq \frac{N}{p} \\
y \text { has no prime factor in } \\
(y, q)=1}} f(y) \sum_{\substack{i \leq r}} f(p) e\left(\frac{a \bar{p} \bar{y}}{q}\right)+O\left(\frac{N}{\sqrt{e^{r} \leq p<e^{r+1}} \begin{array}{c}
\\
p \leq \frac{N}{y} \\
(p, q)=1
\end{array}}\right. \\
& \ll \sum_{r=\left[d_{0}\right]+1}^{\left[d_{1}\right]-1} \sum_{\substack{y \leq \frac{N}{e^{r}} \\
(y, q)=1}}\left|\sum_{\substack{e^{r} \leq p<e^{r+1} \\
p \leq \frac{N}{y} \\
(p, q)=1}} f(p) e\left(\frac{a \bar{p} \bar{y}}{q}\right)\right|+O\left(\frac{N}{\sqrt{\log \log (6 N)}}\right) .
\end{aligned}
$$

Let

$$
Y=\frac{N}{e^{r}} .
$$

We shall estimate the sum

$$
\Sigma_{1}=\sum_{\substack{y \leq Y \\(y, q)=1}}\left|\sum_{\substack{e^{r} \leq p<e^{r+1} \\ p \leq \frac{N}{y} \\(p, q)=1}} f(p) e\left(\frac{a \bar{p} \bar{y}}{q}\right)\right| .
$$

Lemma 2. For the positive integer q and the integer b, we have

$$
\begin{equation*}
\sum_{\substack{X<n \leq Z \\(n, q)=1}} e\left(\frac{b \bar{n}}{q}\right) \ll\left(\frac{Z-X}{q}+1\right)(b, q)+q^{\frac{1}{2}+\varepsilon} . \tag{16}
\end{equation*}
$$

Proof. Lemma 2.1 in Fouvry-Shparlinski states that

$$
\sum_{\substack{X<n \leq Z \\(n, q)=1}} e\left(\frac{b \bar{n}}{q}\right) \ll \mu^{2}\left(\frac{q}{(b, q)}\right)\left(\frac{Z-X}{q}+1\right) \cdot \frac{\varphi(q)}{\varphi\left(\frac{q}{(b, q)}\right)}+\tau(q) \tau((b, q)) \log (2 q) q^{\frac{1}{2}} .
$$

Then the bounds

$$
\frac{\varphi(q)}{\varphi\left(\frac{q}{(b, q)}\right)}=q \prod_{p \mid q}\left(1-\frac{1}{p}\right) \cdot\left(\frac{q}{(b, q)} \prod_{p \left\lvert\, \frac{q}{(b, q)}\right.}\left(1-\frac{1}{p}\right)\right)^{-1}=(b, q) \prod_{\substack{p \left\lvert\, q \\ p \nmid \frac{q}{(b, q)}\right.}}\left(1-\frac{1}{p}\right) \leq(b, q)
$$

and $\tau(q) \ll q^{\frac{\varepsilon}{4}}$ produce the conclusion in Lemma 2 .
Using Cauchy inequality, we can estimate Σ_{1} by Lemma 2. For more details, see
K. Gong, C. Jia, Kloosterman sums with multiplicative coefficients. arXiv:1401.4556.

3. Shifted character sums

Let χ be a non-principal Dirichlet character modulo a prime q, and a be an integer with $(a, q)=1$.
I. M. Vinogradov (1930s-1950s): character sums over shifted primes

$$
\sum_{n \leq N} \Lambda(n) \chi(n+a),
$$

with he best known is a nontrivial estimate for the range $N^{\varepsilon} \leq q \leq N^{\frac{4}{3}-\varepsilon}$, which lies deeper than the direct consequence of Generalized Riemann Hypothesis.
A. A. Karatsuba (1970): widen the range to $N^{\varepsilon} \leq q \leq N^{2-\varepsilon}$.

Theorem 2. Let $f(n)$ be a multiplicative function satisfying $|f(n)| \leq 1, q\left(\leq N^{2}\right)$ be a prime number, χ be a Dirichlet character modulo $q,(a, q)=1$. Then

$$
\sum_{\substack{n \leq N \\(n, q)=1}} f(n) \chi(n+a) \ll \frac{N}{q^{\frac{1}{4}}} \log \log (6 N)+N^{\frac{1}{2}} q^{\frac{1}{4}} \log (6 N)+\frac{N}{\sqrt{\log \log (6 N)}}
$$

The estimate is nontrivial for

$$
(\log \log (6 N))^{4+\varepsilon} \ll q \ll \frac{N^{2}}{(\log (6 N))^{4+\varepsilon}},
$$

which should be compared with the conjectural range as indicated by A. A. Karatsuba (1970).

Theorem 3. We assume f, q, χ the same as Theorem 2. For $t \geq 2$ and pairwise distinct integers $a_{1}, a_{2}, \ldots, a_{t}$ modulo q, we have

$$
\sum_{\substack{n \leq N \\(n, q)=1}} f(n) \chi\left(\left(n+a_{1}\right) \cdots\left(n+a_{t}\right)\right) \ll \frac{N}{q^{\frac{1}{4}}} \log \log (6 N)+N^{\frac{1}{2}} q^{\frac{1}{4}} \log (6 N)+\frac{N}{\sqrt{\log \log (6 N)}}
$$

Remarks. 1) Taking $f=\mu$ to be the Möbius function in the Theorem 3, we obtain an example for the Möbius Randomness Law ${ }^{1}$. Such an example answers, in a special case, a problematic issue posed by Sarnak (2010).
2) The $t=2$ case of Theorem 3 corresponds to Karatsuba (1978). While for any $t \geq 3$, our result should be compared with a conditional result of Karatsuba (DAN, 1978), which relies on a conjectural upper bound for a kind of character sums in two variables.

Indeed, Karatsuba's Conjecture states that, if $f(x) \in \mathbb{Z}[x]$ is not a complete square modulo q, the integers a_{1}, \ldots, a_{t} are pairwise non-congruent modulo $q, t \geq 2$, and $F(x, y)=$ $f\left(x+a_{1} y\right) \cdots f\left(x+a_{t} y\right)$, then the estimate

$$
\left|\sum_{x=1}^{q} \sum_{y=1}^{q}\left(\frac{F(x, y)}{q}\right)\right| \ll q
$$

holds, where the constant implied in \ll depends only on t and $\operatorname{deg} f$.
In the same way as that of $\S 2$, we can bound the original sum by

$$
\sum_{\substack{n \leq N \\(n, q)=1}} f(n) \chi(n+a) \ll \sum_{r=\left[d_{0}\right]+1}^{\left[d_{1}\right]-1} \sum_{\substack{y \leq \frac{N}{e^{r}} \\(y, q)=1}}\left|\sum_{\substack{e^{r} \leq p<e^{r+1} \\ p \leq \frac{N}{y} \\(p, q)=1}} f(p) \chi(p y+a)\right|+\frac{N}{\sqrt{\log \log (6 N)}}+\frac{N}{q} .
$$

[^1]Lemma 3. Let q be a prime number, $\chi_{1}, \ldots, \chi_{r}$ be Dirichlet characters modulo q, at least one of which is non-principal. Let $f(X) \in \mathbb{F}_{q}[X]$ be an arbitrary polynomial of degree d. Then for pairwise distinct $a_{1}, \ldots, a_{r} \in \mathbb{F}_{q}$, we have

$$
\left|\sum_{x \in \mathbb{F}_{q}} \chi_{1}\left(x+a_{1}\right) \cdots \chi_{r}\left(x+a_{r}\right) e\left(\frac{f(x)}{q}\right)\right| \leq(r+d) q^{\frac{1}{2}}
$$

Lemma 4. Let q be a prime number, χ be a non-principal Dirichlet character modulo q. Then for an arbitrary integer h with $1 \leq h \leq q$ and distinct $s, t \in \mathbb{F}_{q}$,

$$
\sum_{x=1}^{h} \chi\left(\frac{x+s}{x+t}\right)=O\left(q^{\frac{1}{2}} \log q\right)
$$

holds true.
Lemma 5. Let q be a prime number, χ be a non-principal Dirichlet character modulo q, $(a, q)=1$. Then for two primes p_{1}, p_{2} with $\left(p_{1}, q\right)=\left(p_{2}, q\right)=1, p_{1} \not \equiv p_{2}(\bmod q)$, we have

$$
\sum_{X<y \leq Z} \chi\left(\frac{p_{1} y+a}{p_{2} y+a}\right) \ll \frac{Z-X}{q} \sqrt{q}+\sqrt{q} \log q .
$$

holds true.
For more details in this part, see the preprint
K. Gong, C. Jia, Shifted character sums with multiplicative coefficients. arXiv:1404.2204.

[^0]: Notes prepared for a talk given at the Contemporary Problems in Number Theory Seminar, Steklov Institute of Mathematics on August 7, 2014. This talk is supported by the "Program for Short-Term Visits to Russia by Foreign Scientists" of Dynasty Foundation.

[^1]: ${ }^{1}$ Möbius Randomness Law. The Möbius function μ changes sign randomly so that for any "reasonable" sequence of complex numbers $\mathcal{A}=\left(a_{m}\right)$ the twisted sum

 $$
 M(\mathcal{A}, x)=\sum_{m \leq x} \mu(m) a_{m}
 $$

 is relatively small due to the cancellation of its terms. - Iwaniec \& Kowalski

