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Fluctuation relations

Jarzynski equality, C. Jarzynski, PRL 78, 2690 (1997)
—B(W—-AF
Ca ( )> 1 Fo

This is a powerful expression (equality!):
1.since (%) > e
we have (W) = AF (2nd law)

2. For Gaussian noise (near-equilibrium
fluctuations) one obtains

Waiss = (W) — AF = g((W?) — (W)?)/2

PT(AS) — eAS/kB
PT(_AS)
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Nonequilibrium Measurements i

in an Experimental Test of
Jarzynski's Equality
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A 30 nm Extension [nm) 50 nm
PSabc Fig. 2. Force-extension unfolding curves of PSabc at three different switching rates. (A) Typical
AC, pACAB force-extension unfolding (U) and refolding (R) curves of the PSabc RNA in 10 mM EDTA in
hﬁ'él reversible (blue, 2 to 5 pN/s) and irreversible (red, 52 pMN/s) switching conditions. (B) Two
. experiments are shown: one in which a molecule was unfolded at rates of 2 to 5 pN/s and 34 pN/s
P Ao, (left pair, blue and green), and another in which the molecule was unfolded at rates of 2 to 5 pMN/s
GG and 52 pM/s (right pair, blue and red). Curves (superposition of about 40 curves per experiment)
'Jgg:ﬁ were smoothed by convelution with a Gaussian kernel.
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Lhe Psabc RNA. (B) RNA mulecules were al-

tached between two beads with FNA-DNA hy-

brid handles.
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Experimental Free Energy Surface Reconstruction from Single-Molecule Force Spectroscopy
using Jarzynski’s Equality

Nolan C. Harris, Yang Song, and Ching-Hwa Kiang™
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FIG. 1 (color). Single-molecule pulling experiments using
AFM. (a) One end ol the molecule 1s attached w the cantlever
tip and the other end to a gold substrate, whose position is
controlled by a piezoelectric actuator. An analogue of the single-
molecule force measurements is illustrated. The cantilever
spring obeys Hooke's law, whereas the protein molecular spring
follows the wormlike chain model (illustrated wsing rubber
bands).
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Statistics of generated heat and
work in driven single-electron
transitions

Proposal: D. V. Averin and J. P. Pekola, arXiv:1105.0416, EPL 96, 67004 (2011).

Dissipation generated by tunneling in a biased

E O >® 1AU(’() junction
Ko
= (W-E)+(E-ny) = py-p, = AU

Generated heat Q = AU due to relaxation (typically electron-phonon scattering)
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Generated heat in driven single-
electron transitions
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Distribution of heat

Take a normal-metal SEB

Ty = +(Gr/e2)AU/(:

with a linear gate ramp
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Moments of generated heat

Central moments from the correlation functions of charge, which
In turn are obtained from the basic master equation.

Q=0 —(Q)
Noise of the generated heat:

g = (Q%)'?

The thrird cumulant of
the generated heat:

Ao = (@33

For slow ramp:

O'é — QkBT<Q>
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Fluctuation relations in a single-electron box

<€_Q(W—AF)> ?: 1 Jarzynski equality



H, F and W In the SEB
H(n,ng) = Eq — Q4V,

This is the energy minimized in a voltage biased circuit Ech + Ebattery

SYSTEM —__—V — Ech =+ [Ebattery,() — /Vglgdﬂ
EC
h — ECh o Vg@g (—I—Ebatteryj())

1
E., is the "bare” charging energy of the capacitors E., = Z 507; Viz
i

Z(ng) = e BH(0ng) 4 o—BH(1,ng) F(ng) =—pB"11InZ(n,)

Free-energy difference between the end points of the gate voltage trajectory

AF = F(ngp)— F(ng a)



Work done (by the gate)

In general:
Win —fdt fdt)l

For a SEB box:

Win = ngng — ngg - ngdVg

1
Win — AF = Ec(1 — 2/ ndng)
0

for the gate sweep 0> 1

This is to be compared to: CQ — QEC} E :Z(‘J"Tlg?-g,



Evaluation of (¢~ %)

E D w f — Z (By similar arguments as Crooks, 1998)

For symmetric
trajectories (linear
ramp, harmonic
drive around the
degeneracy,...)

| (7€) =1
In general
<6—5Q> S 1

1E-3 0.01 0.1 1
1 tperiod



Example: Abrupt trajectory

A

9 Assume long equilibration time before and after
the jump:

0 >
0 . T
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Single-electron box with an arbitrary
n,: 0 ->1 gate ramp
Jarzynski equality:

The generated heat Q is not always equal to (Wi, — AF):
(Wth - A-F)O—>1 - Q (vatll - AF)l—*O — Q
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This difference yields for an arbitrary trajectory: (¢ ~?(Wim=2F)y — 1



Experiment in a single-electron box

O.-P. Saira, Y. Yoon et al., in preparation
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Experimental distributions
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Measurements of the heat distributions at
various frequencies and temperatures

symbols: experiment; full lines: theory; dashed lines: aé = 2kpT(Q)
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Single-electron box with an overheated
Island (predictions)

10¢

Linear or harmonic
drive across many
transitions

o N S » (0]

T T Tbox

l—w-_é:
Lol A/G/B: (T_Tbox)/T
s I _ 1




'-I‘l‘- -

Back-and-forth ramp with heating

A

Assume one transition in each leg
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Maxwell’'s demon



Negative heat

Possible to extract heat
from the bath

0.5 e
P amn
Vi
- 00.2
<« —
oo—" | N QO 0.1
321012 3 4

Provides means to make Maxwell's demon using SETs



Maxwell’s demon in an SET trap

S. Toyabe et al., Nature Physics 2010

"watch and move"os—
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DETECTOR DETECTOR DETECTOR
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D. Averin, M. Mottonen, J. Pekola,
arXiv:1108.5435
see also: G. Schaller et al., PRB (2011)
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Demon strategy

Adiabatic "informationless” pumping: W = eV per cycle

SET SET SET ldeal demon: W =0
DETECTOR DETECTOR DETECTOR
l 0.8 —
C c L ¢ I
Lo flnfefe  orf
N Ll X
C°:_ Cgf Cgf = 06k i
_T_ Vgl VgZ 05 ________ |
Energy costs for the F0.4 - .
transitions: 03l ]
AU, + = Ec/2—eV/3 - S
AU — = eV/3 021 (1.0 ]
Rate of return (0,1)->(0,0) 0.1F =
determined by the energy 0.0 i . NN L,

"cost” —eV/3. If ['(-eV/3) << 11,
the demon is "successful”.
Here 11 is the bandwidth of the
detector. This is easy to satisfy
using NIS junctions.
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Power of the ideal demon:
P = (eV/3)'(eV/3)
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Temperature fluctuations



Fluctuation dissipation theorems (FDT)

Classical noise in equilibrium

Charge current:
I =GV S; =4kgTG
Energy current:

.
VY

/ = GthAT SQ = QI%BT



Classical temperature fluctuations

Assume that T, is equal to the average of T
(equilibrium fluctuations)

S = 2kpT? Gy,

(fluctuation-dissipation theorem)

Q=CT + G (T — Tp)

(balance equation)
Sy = w?C*Sr + G, S

(Fourier transform into noise spectra)

56

w2(C? + th

ST =



Classical temperature fluctuations

Sr () 2% pT? 1
W) =
g G 1+ w2C2/G2,

T, We — G th / C

(6T = foo d—wST(w) = kgT=/C

oo 2T



Example system: electrons in the
phonon bath

electrons

(AT?) < T/V

250nm phonon bath

In this grain at T = 100 mK, (AT?) = (10 mK)2.

Cut-off frequency f,
determined by electron-
phonon relaxation rate, it
varies in the range 10 kHz —
10 MHz: suitable for a
measurement.




Non-equilibrium temperature
fluctuations
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Heikkilda and Nazarov, PRL 102, 130605 (2009)
Laakso, Heikkila and Nazarov, PRL 104, 196805 (2010)



Preliminary measurements

Resonance: fy = 639 MHz
Experimental setup Quality factor: ) = 280
@ Optimal bias point: I,, = ()

RF
: 2

Bias-Tee
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Summary

Work and heat in driven single-electron transitions
analyzed

Fluctuation relations tested analytically,
numerically and experimentally

Experiments on an overheated SEB, Maxwell’s
demon and temperature fluctuations to be done/in
progress

Quantum fluctuation relations for superconducting
systems?



Landau-Lifshitz, Statistical Physics, Part 2

We can also write out formulae (88.16)-(88.18) in Fourier components with
respect to frequency, and we shall do this in a form which generalizes them to
the case of quantum fluctuations. According to the general rules of the fluctua-
tion-dissipation theorem, such a generalization is obtained by including an
extra factor (fiw/2T) coth (fiew/2T) (which is unity in the classical limit fiw << T).
In the presence of dispersion of the viscosity and thermal conductivity, the
quantities 1, { and » are complex functions of the frequency; in the formulae:
for the fluctuations, fhey are replaced by the real parts of those functions:

P2 = 0, (88.19)
(gPg), = b48(r1—r2) AT coth (hw/2T) re x(w),  (88.20)
(5053, = Awd(r1—12) coth (Few/2T) X
X[(80km+ 8imdra— 5 dirdim) e 1(00) +8 kO T€ §(@)].  (88.21)




LL predictions

hw
— 9 h
St (w) hw cot (szT)G
S+ (w) = hwT coth( w )G
Q B 2kpT th

Classical: SQ — QkBTQGth



A tunnel junction as a heat conductor
t

C—

Heat conductance at finite frequencies:
T GE*T L R
3e2

at all frequencies, Wiedemann-Franz law, G = 1/R-

§R€Gth (CU) -

So(w) = hwT coth(hw/2kT)ReG i, (w) + (hw)? coth(hw/2kT)

12¢2
According to LL:
Sew) =0, T—0

According to the scattering calculation, or by tunnel hamiltonian based calculation:

G

12¢2

D. Averin and J. Pekola, PRL 104, 220601 (2010), D. Sergi, PRB 83, 033401 (2011), Zhan,
Denisov and Hanggi, arXivv:1107.3434.

Sow) — (hw)?, T — 0




The energy distribution of electrons in a small
metal conductor

The distribution is determined by energy relaxation:

Equilibrium —Thermometer measures the temperature of the bath

Quasi-equilibrium —-Thermometer measures the temperature of the electron system which can be
different from that of the bath

Non-equilibrium —

10
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00F

lllustration: diffusive
normal metal wire
H. Pothier et al.

PRL 1997
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Electron-electron and electron-phonon

relaxation
(1-f(E+hw)) (1-f(E-hw))
" e-e relaxation drives the
E+ho ho E'-hw system towards quasi-
o X0 equilibrium
f(E) f(E)
(1-fE+hw)) (1-f(E-hw))
o e-p relaxation drives
£ +ﬁ0‘:\ ho \ ho the system towards
o _ s n(ho) O I nho)tl  eqyilibrium

5/1 E/' Heat generation

f(E) f(E)



NIS junction as a refrigerator

Cooling power of a

Thermometry: . .
150 F : ! & ; NIS junction:
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eRr
Optimum cool'ng power is Efficiency of a NIS
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A kT .. junction refrigerator:
reached at V = Ale: PNIS, max = 0-59€2RT( A )32 = kBT/A
(c] 5004

4007

M. Leivo et al.,
APL 1996
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Full non-equilibrium (harmonic drive)

NOWfne(E) = [poyT (E, AU) — piy~ (E,AU)] — V[fne(E) — f(E))]
N Relaxation rate
> Population of n extra towards equilibrium
y*- electrons in the box, p,
AU E(EAU) = (2Ry) ' f(EFAU) 1~ fae(E)]
j\,-"([))]}! = DOS X Volume of the box

10_- 0-_

LEAD

< e-B(W - AF) S

p = yr/(yr + ) with vp = [N(0)Ve*Ry]~



Numerical simulations and analytic approximation
for an overheated island

3.5m

¢ o MC simulation o4
1st order result

3.0

2nd order result

N
:
I 0
F+ Cg vg V
o il FO—
¢ Y
B=1/k,T



