Quantum Computing

Peter Shor
M.IT.
Cambridge, MA

What is the difference between a computer and a physics exper-
iment?

One answer:

A computer answers mathematical questions.
A physics experiment answers physical questions.

Using computers to
test whether two
bodies fall at the
same rate

Another answer:

A physics experiment is a big, custom-built, finicky, piece of
apparatus.
A computer is a little box that sits on your desk (or in your
briefcase).

" G
M v w /

Physics experiment

Computer

Another answer:

You don’t need to build a new computer for each mathematical
question you want answered.

The mathematical theory of computing started in the 1930’'s
(before computers)

After Godel proved his famous incompleteness theorem, it was
followed by four papers giving a distinction between computable
and uncomputable functions

(Church, Turing, Kleene, Post, ca. 1936)

These papers contained three definitions of computable func-
tions which looked quite different.

Universality of computation I.

Church-Turing thesis:
A Turing machine can perform any computation that any (phys-

ical) device can perform.
(Turing, Church, ca. 1936).

10

With the development of practical computers, the distinction be-
tween uncomputable and computable become much too coarse.

To be practical, a program must compute a function in a rea-
sonable amount of time (in years, at the longest).

11

T heoretical computer scientists consider an algorithm efficient

if its running time is a polynomial function of the size n of its
input. (nz, n3, n% etc.)

The class of problems solvable with polynomial-time algorithms
is called P

This is a reasonable compromise between theory and practice.

12

For the definition of P (polynomial-time solvable problems) to
be meaningful, you need to know that it doesn’t depend on the
exact type of computer you use.

13

Universality of computation revisited.
This led various computer scientists to propose the

Quantitative Church’s Thesis (Cobham)
A Turing machine can perform efficiently any computation that

any (physical) device can perform efficiently.

(Various theoretical computer scientists, 1960's).

If quantum computers can be built, this would imply this “folk
thesis” is not true.

14

Misconceptions about Quantum Computers

False: Quantum computers would be able to speed up all com-
putations.

Quantum computers are not just faster versions of classical computers.
They would speed up some problems by large factors and other problems not
at all.

The fact that this misconception is so widespread shows that the public has
absorbed the Quantitative Church's Thesis.

A single step on a quantum computer is almost certain to take longer than a
single step on a classical computer. Quantum computers speed up computa-

tions by drastically reducing the number of steps needed.

15

Where would you look for counterexamples for the Quantitative
Church-Turing thesis?

Maybe in physical systems that are hard to simulate.

16

Yuri Manin

e Simulating physics using a digital computer seems inherently
exponentially inefficient. (Feynman, 1982, R. P. Poplavskii,
1975)

e A ‘“quantum computer’” might be able to get around this
problem. (Feynman, 1982; Manin, 1980)

17

In 1985, David Deutsch asked whether quantum computers might
speed up computation for non-quantum mechanics problems.

Problems with potential speed-ups by quantum computers were
found by:

David Deutsch and Richard Jozsa (1992)
André Berthiaume and Gilles Brassard (1992)
Ethan Bernstein and Umesh Vazirani (1993)
Dan Simon (1993)

18

What do we know quantum computers are good for?

e Simulating/exploring quantum mechanical systems efficiently.
[Richard Feynman/Yuri Manin]

e Finding periodicity.
Simon’s problem [Dan Simon]
Factoring large integers and finding discrete logarithms effi-
ciently [PWS]
Pell's equation and other number theory questions[Sean Hall-
gren].

e Searching large solution spaces more efficiently [Lov Grover]
Amplifying the success probability of (quantum) algorithms
with small success probabilities.

19

Searching

Quantum computers give a quadratic speed-up for exhastive
search problems (Lov Grover). Looking through N possibilities
takes

e expected time N/2 on a classical computer.

e expected time %x/N on a quantum computer.

20

Factoring

Quantum computers give an exponential speed up for factor-
ing large integers.

Given a number N, find A,B < N soO

Ax B =N

21

Factoring an L-bit number

Best classical method is the number field sieve (Pollard)
time: exp(cLl/3(log L)2/3).

Quantum computer (Shor)
time cL?(log L)(log log L)

22

Practical implications
Security on the Internet is based on public key cryptography.

The most widely used (and most trusted) public key cryptosys-
tems are based on the difficulty of factoring and of finding dis-

crete logarithms.

Both of these are vulnerable to attacks by a quantum computer.

23

What are the fundamental physical principles on which a quan-
tum computer operates?

This is a difficult question, as quantum computers seem to much
of the structure of quantum mechanics. They use:

e [he superposition principle

e High dimensionality of quantum state spaces

e Quantum interference

e Quantum entanglement

24

The Superposition Principle:

If a quantum system can be in one of two mutually distinguish-
able states |A) and | B), it can be both these states at once.
Namely, it can be in the superposition of states

alA) + G| B)

where o and 8 are complex numbers and |a]? + |8]? = 1.

If you look at the system, the chance of seeing it in state | A) is
la|? and in state | B) is |5]2.

25

The Superposition Principle (in mathematics)

Quantum states are represented by unit vectors in a complex
vector space.

Multiplying a quantum states by a unit complex phase does not
change the essential quantum state.

Two quantum states are distinguishable if they are represented
by orthogonal vectors.

26

A qubit is a quantum system with 2 distinguishable states, i.e.,
a 2-dimensional state space.

If you have a polarized photon, there can only be two distin-
guishable states, for example, vertical |]) and horizontal |«)
polarizations.

All other states can be made from these two.

1
/)= \/—I <)+ \/—|I> [N = \/—I =) = \/§|I>

1 1
Gy =11+ 51D [P)=slr-—5ID

27

If you have two qubits, they can be in any superposition of the
four states

|00) [01) [10) |11)

This includes states such as
1
V2

where neither qubit alone has a definite state.

(101) —110))

Such states are called entangled.

28

If you have n qubits, their joint state can be described by a
superposition of 2™ basis states.

T hese basis states can be taken to be:
|000...00) |000...01) 1111...11)

The high dimensionality of this space is one of the places where
quantum computing obtains its power.

29

he ‘“circuit model” for quantum computa-
tion

To compute, we need to
e Put the input into the computer.
e Change the state of the computer.

e Get the output out of the computer.

30

Input

Start the computer in the state corresponding to the input in
binary, e.g.

1100101101).

We may need extra workspace for the algorithm. We then need
to add Os to the starting configuration.

1100101101) ® | 0000000000) .

(Alternatively we may permit an operation which adds additional
qubits in the middle of the computation.)

31

Qutput

At the end of the computation, the computer is in some state

ok_q

> ol

i=0
We can NOT measure the state completely, because of the
Heisenberg uncertainty principle.

We assume we measure in the canonical basis | 000...00), | 000...01) ,
.o 111..11)

We observe the output |:) with probability |o;|?.

32

Qutput

When we observe the computer, we get a sample from a proba-
bility distribution.

Because of quantum mechanics, this is inherently a probabilistic
process. We say that the computer computes a function cor-
rectly if we are able to get output that gives us the right answer
with high probability.

33

The Linearity Principle

The evolution of an isolated quantum system is linear.

Because linear transformations can be represented as a matrix,
the evolution of pure states in an isolated quantum system can

be described by a matrix operating on the state space.

To preserve probabilities, the matrices must be unitary.

34

Computation

Apply transformations to qubits two at a time.

>+|1> 1>
. . 0>+ |
4R
N
0
|01> - |10>
Classical Gate Quantum Gate

A computation (program) is a sequence of quantum gates ap-
plied to one or two qubits at a time.

35

Why at most two qubits at a time?

If we allowed unitary gates that transformed all the qubits, then
we could choose a gate that took the input to the desired output
in one step, and experimental physicists would have no clue as
to how to implement it. This wouldn’t be helpful.

T hree-qubit gates are theoretically not any more powerful than
two-input gates (they reduce computation time by a constant in
general), and much harder to implement experimentally.

36

Quantum Gates

A quantum gate is a linear transformation on a 2-dimensional
(1-qubit) or 4-dimensional (2-qubit) space.

It is thus a 2 x 2 or 4 x 4 matrix.
In order to preserve probabilities, it must take unit length vectors

to unit length vectors. This means the matrix is unitary. That
is, if G is the gate, GT = G~ 1.

37

Quantum Gates

How does a quantum gate on two qubits (4 x4 matrix) operate on
the quantum state space of n qubits (a 2"-dimensional vector).

You have to take the tensor product of the quantum gate on
those two qubits with the identity matrix on the remaining qubits.

38

Interference

Because superpositions of states can have complex coefficients, you can make
qubits interfere with themselves.

Applying the transformation

[0) — (10) +11))

NN

1) = (1) =10

twice takes |0) — |1) and |1) — —|0), since the |0) terms in the result cancel
out.

e) =039

Without interference, a quantum computer can be simulated by a digital

This is written in matrices as (

computer with a random number generator.

39

Idea behind fast quantum computer algorithms:

Arrange the algorithm to make all the computational paths that
produce the wrong answer destructively interfere, and the com-
putational paths that produce the right answer constructively
interfere, so as to greatly increase the probability of obtaining
the right answer.

This is generally very difficult to figure out how to accomplish,
and this may account for the fact that so few quantum algo-
rithms have been discovered.

40

Idea Behind All Fast Factoring Algorithms

To factor a large number N, Find numbers a and b so that
a® =b2 mod N

a7 +b mod N
Then
2 2 __ —
a—bc=(a+b)(a—b) =cN

We now extract one factor from a + b and another from a — b.

We can use Euclid’s algorithm for greatest common divisors to
find the factors; the greatest common divisor of a4+ b and N will

be one factor.
41

Example: Factoring 33

Take the numbers a = 10 and b = 1. Then 100 divided by 33
has remainder 1, so

10° =12 mod 33
Then
10° — 12 =(10+1)(10 — 1) = 33.

The first factor gives 11, since gcd(11,33) = 11;
the second gives 3, since gcd(9,33) = 3.

Thus, we find 33 =11 % 3.

42

Quantum Factoring Idea

To factor a large number N:

Find the smallest » > 0 such that z" =1 (mod N).
(z"/2 4+ 1)(2"/2 — 1) =0 (mod N).

We now get two factors by taking the greatest common divisors

gcd(z"/2 4+ 1, N)

gcd(z"/2 — 1, N)

We can show this gives a non-trivial factor for at least half of
the residues x(mod N).

43

How do we find r with
' =1 (mod N)?

Find the period r of the sequence ¢ (mod N).

44

Example: Factoring 33

Take x = 5. Then (mod 33) we get

1552 53 54 55 56 57 58 59 510 511
1 5 25 26 31 23 16 14 4 20 1 5

The period r is 10, and
z"/2 =5%=23 mod 33.
Then
33 divides (5° 4+ 1)(5° —1) = (23 4+ 1)(23 — 1) =24 %22

Taking greatest common divisors, 24 gives us the factor 3, and
22 gives us the factor 11, and we find 33 =3 x11.

45

Need to find the period of z¢ (mod N).
Idea: Use the Fourier transform
Problem: The sequence has an exponentially long period

Solution: Use the exponentially large state space of a quantum
computer to take an exponentially large Fourier transform effi-

ciently.

46

Factoring L-bit numbers

We will work with quantum superpositions of two registers

Register 1 Register 2
2L Dbits L Dbits

We will not give the fine details of the algorithms.

These involve more workspace
(3L workspace is easy, < L workspace is possible).

47

Quantum Fourier Transform over Z,

Have k qubits

k
1 20 —1

27mzcy
~ oW Z exp(—;—

) [y)

Need to break this into a series of 2-qubit gates.

The Cooley-Tukey Fast Fourier Transform algorithm can be
adapted to ~ k2 steps on a quantum computer.

48

Quantum Fourier Transform over Z,

k
1 20—1

—27m:cy
2k/2 Z exp(

) [y)

Break z and y up into bits: z = Y 252"
For each pair of bits =, and Y3, either:

2a+

If o« + 3 > k, then we have exp(—2mixy) =1 and we don't

have to do anything.

oz-l-ﬁ

If a+ 3 < k—1: then we use |xay5> — exp(— 27m£vy) |€Uozyﬁ>

If a+3=%k—1, then we use |z4) — Z;f;: (—1)xo‘y5|y5>

49

Reversible Computation

We can do classical computations on a quantum computer as
long as we can do these classical computations reversibly. That

IS, with gates each of whose possible outputs maps uniquely back
to the inputs.

Any classical computation can be made reversible as long as we
keep the input around.

50

Making Computations Reversible

In general, if we have a classical computation, then we can write
reversibly it as

|input) |000...0) — |output) | garbage)

where the |garbage) is extra information that we have store to
make it reversible.

We can’'t use it for the factoring algorithm in this form, since
the garbage destroys the interference. However, we can copy the
output into another register

| output) | garbage) | 000...0) — |output) | garbage) | output)

Now, we can undo the computation on the first two registers.
| output) | garbage) | output) — |input) | 000...0) | output)

51

Reversible Gates

The 3-bit Toffoli gate is a universal gate for reversible compu-
tation

(z,9,2) = (2,9,2D (x A\ y))

We can get AND, OR, and NOT from it by putting certain
constants in the input. For example, x = 1,y = 1 gives NO'T =z
in the output, and z = 0 gives (x AND vy).

Recall that AND and NO'T gates are universal for classical com-
putation.

This Toffoli gate can be implemented as a sequence of 2-qubit
quantum gates.
52

10Y | 0) Factoring Algorithm

| =~ L steps
1 221

L > a0

a=0

| =~ L?logLloglogL steps

L > la)|z* (mod N))
a=0

| =~ L? steps

1 22b-12l—1

35 2. 2 le|a® (mod N)) ¢~ 2miac/2"
a=0 =0

Observe computer.

53

We need to find the probability amplitude on

[c) [z% (mod N))

in the superposition

22L_12L_1 o
3L/2 y: y: |C> |$a (mod N)> e—27mac/2
2 a=0 ¢=0

Many different values of a give the same value of z% (mod N).

We have to add the coefficients e—27ac/2" on all of them.

54

Let ag be the smallest non-negative integer such that
%0 = z%(mod N).

Then z%, zoo+7 zaw+2r gre all equal (mod N).

Each contributes to the amplitude on
|) [z* (mod N))

with the coefficient e—2mi(ao+br)c/2"

The ag term can be dropped, since it just contributes a phase
e—2miaoc/2" to the sum.

55

Our quantum computer was (before observation) in the state

1 22b-128-1 o
575 2 > le)[a" (mod N)) e2miac/2

a=0 =0

We concentrate on what happens when we observe a paticular
| 2% (mod N)). Recall that a = ag + br. We can make this
substitution, and remove the e 27TZC‘OC/Q factor.

We thus observe |c) with probability proporitional to

%22L/r 2
Z e—27rib7°c/2L
b=0

This is a geometric sum which is close to O unless
rc

r=d+ O(r/2%%)

for some integer d.
56

We know
e

L =d+ O(r/2%5).

Thus
C 1
oL — + © (22L)
with » < N.

But L was the number of bits in N, so 22L ~ N2

This means % will be one of the closest fractions to =5 with

2L
numerator and denominator less than N.

We can use an algorithm called continued fractions to find %,
and then use r to factor NNV.

57

.12

10 -
. 08 -
. 06 -
. 04 -
. 02 A

1
©O O O o o o o

0 32 64 96 128 160 192 224 256
C

Example: Factoring 33

The period r is 10.

58

Difficulties of Quantum Computing
Quantum states are notoriously hard to manipulate.

To do 1010 steps on a quantum computer without error cor-
rection, and still come up with the right answer, you would need
to perform each step with accuracy one part in 1010,

59

The same objection was raised to scaling up classical computers
in the 1950’'s.

Von Neumann showed that you could build reliable classical com-
puters out of unreliable classical components.

Currently, we don’'t use many of these techniques because we
have extremely reliable integrated circuits, so we don't need
them.

60

Main techniques for fault-tolerance
on classical computers.

Consistency Checks

Checkpointing

Error-Correcting Codes

Massive Redundancy

61

Quantum Computing Difficulties

Heisenberg Uncertainty Principle:
You cannot measure a quantum state without changing it.

No-Cloning

heorem:

You cannot duplicate an unknown quantum state.

62

Can you use these techniques on a quantum computer?

e Consistency Checks

e Checkpointing

e Error-Correcting Codes

e Massive Redundancy

63

Can you use these techniques on a quantum computer?

e Consistency Checks
Doesn’'t get you far on either classical or quantum computers.

e Checkpointing

e Error-Correcting Codes

e Massive Redundancy

64

Can you use these techniques on a quantum computer?

e Consistency Checks
Doesn’'t get you far on either classical or quantum computers.

e Checkpointing
Cannot use on a quantum computer.

e Error-Correcting Codes

e Massive Redundancy

65

Can you use these techniques on a quantum computer?

e Consistency Checks
Doesn’'t get you far on either classical or quantum computers.

e Checkpointing
Cannot use on a quantum computer.

e Error-Correcting Codes
Works well quantum mechanically.

e Massive Redundancy

66

Can you use these techniques on a quantum computer?

e Consistency Checks
Doesn’'t get you far on either classical or quantum computers.

e Checkpointing
Cannot use on a quantum computer.

e Error-Correcting Codes
Works well quantum mechanically.

e Massive Redundancy
Adaptable to quantum computers, but does not work well.

67

Quantum error correction

Quantum error correcting codes exist.

They can be used to make quantum computers fault-tolerant.
so that you only need to perform each step with accuracy ap-
proximately one part in 10%.

63

How do quantum error-correcting codes get around the no-cloning
theorem Heisenberg uncertainty principle?

Measuring one of the qubits gives NO information about the en-
coded state, so the remaining qubits can retain all the informa-
tion about the encoded state without violating the non-cloning
theorem.

We design the codes so that we can measure the error without
measuring (or disturbing) the encoded state.

This means that in our codes, we must have all likely errors or-
thogonal to the encoded data

We can then measure and fix the error without destroying the

encoded data.
69

Repetition Code

The simplest classical error correcting code is the repetition
code.

0O — 000
1 — 111

What about the quantum version?

|0) — |000)
1) — |111)

70

Quantum Bit Error Correcting Code

|0) — |000)
1) — |111)

This works against bit flips

(01
9z =11 0
1000) — |010)
1111) — |101)

Can measure “which bit is different™?"”

Possible answers: none, bit 1, bit 2, bit 3.
Applying o, to incorrect bit corrects error.

ox(2) :

71

Quantum Bit Error Correcting Code

This also works for superpositions of encoded |0) and |1).

ox(2) : a|000) + 3| 111) — o |010) + 3|101)

When this is measured, the result is “bit 2 is flipped,” and since
the measurement gives the same answer for both elements of
the superposition, the superposition is not destroyed.

Thus, bit 2 can now be corrected by applying o.(2).

72

Quantum Bit Error Correcting Code

|0) — |000)
1) — |111)

What about a phase flip error ¢, = (é _(1)) 7

000) — |000) = | Eop)
111) — —|111) = | E4)
A phase flip on any qubit gives a phase flip on the encoded
qubit, so phase flips are three times as likely. The same thing

happens for a general phase error ((1) 62)) .

73

Another 3-qubit code

. : 1 (1 1
The unitary transformation H = ﬁ(1 1) takes

phase flips to bit flips and vice versa: H((1) é)H: (Cl) _(1))

Suppose we apply H to the 3 encoding qubits and to the encoded
qubit. What does this do to our code?
We get a new code
1
|0) — 5(|ooo>+\011>-|—\101>+|110>)

1) — %(|1oo>+\01o>+\oo1>+|111>)

74

Phase error correcting code
1
|0) — 5(|ooo>+\011>-|—\101>+|110>)

1) — %(|1oo>+|o1o>+|oo1>+|111>)

A phase flip on any qubit is correctable. E.g. <(1) _?) on
bit 3.

1
0z(3) | Eo) = 7 (]000) —[011) —[101) +[110))
This is orthogonal to o;(a) | E}) unless a = 3, b= 0.

So we can measure “which qubit has a phase flip?’ and then
correct this qubit.

75

Phase error correcting code
1
|0) — 5(|ooo>+\011>-|—\101>+|110>)

1) — %(|1oo>+\01o>+\oo1>+|111>)

| 0) is encoded as the superposition of states with an odd number
of O's;
| 1) is encoded as the superposition of states with an even number
of O’s.

So a bit flip on any qubit exchanges O and 1.

Thus a bit flip is three times as likely as on an unencoded state.

76

The 9-qubit code

First quantum error correcting code discovered:

1
|0) — (]000000000) +|000111111) +[111000111) + | 111111000))

1
1) — 5(]111000000) + | 000111000) +[000000111) +[111111111))

This code will correct any error in one of the nine qubits.

It is composed of two codes which are concatenated: the outer
one corrects phase errors, and the inner one corrects bit errors.

If you have a bit flip: < ? é

the other two qubits in its group of three.

), it is corrected by comparison with

77

The 9-qubit code

1
|0) — 5(]000000000) +|000111111) +[111000111) +[111111000))

1
1) — 5(]111000000) 4 |000111000) +[000000111) + | 111111111))

If you have a phase flip on a single qubit: (é _(1)) it gives

the same result as a phase flip on any of the other qubits in the
same group of three.

The correction works via the groups of three bits exactly as it
does in the three-qubit phase-correcting code.

78

t-error correcting codes

By repeating each qubit 2¢t+ 1 times instead of three in the above
construction, you get a t-error correcting code which maps one
qubit to (2t + 1)2 qubits.

79

Theorem: If you can correct a tensor product of ¢ of any of the
following three types of error

(0 1 (0 —i (1 0
%=\10) %“=\i o) "=\lo0o -1
then you can fix any error restricted to t qubits.

Proof Sketch:

Theidentity matrix and oz, oy and o, for a basis for 2x2 matrices.
One can thus decompose any error matrix into a sum of these
four matrices. If the error only affects ¢t qubits, it applies the
identity matrix to the other qubits, so the decomposition never
has more than t terms in the tensor product not equal to the
identity.

80

Example in 3-qubit phase code
1
|10) — 5 (/]000) 4+ |011) +|101) 4+ |110))

1) — %(|1oo>+|o1o>+|oo1>+|111>)

Suppose we apply a general phase error (é e§9> to qubit 1,
say. Can we correct this?

—i0
Rewrite error as < eo 62))

We can do this, since global phase changes are immaterial.

| Eg) — e 0(]000) + |011)) 4+ (| 101) 4+ |110))
= cos6(|000) +|011) +|101) + |110))
—isin6(|000) + |011) — [101) — |110))

81

Correcting an arbitrary phase error

1 0
0 62@'9

If we had a general phase error of () on qubit 1, we got

the state

cosf(|000) +|011) +|101) 4+ |110))
—4sin@(|000) 4+ |011) — |101) — |110))

When we measure “which bit has a phase flip,” we get “bit 1"
with probability |sin?8| and “no error’ with probability | cos26|.

T he state has ‘collapsed,” so our measurement is now correct.

82

We have a 9-qubit code that can correct any error in 1 qubit.
How can we make more general quantum codes?

83

Better classical codes exist than repetition codes.
The [7,4,3] Hamming code, for example.

The codewords are the binary row space of

O O

_ OO+
O K=
=
[l o A)
== O

1
O
1

= RO

This code maps 4 bits to 7 bits. The minimum distance between
two codewords is 3, so it can correct one error.

84

Quantum Hamming code

0000000
10111010

I
/3 | + 1001110
+ 1010011

11100010
11011000

|
V8 | + |oo10110
I

)
)
)
)
)
i
11000101)

++++ ++++

11110100
10011101
10100111
11101001

10110001
10101100
10001011

)
)
)
)
)
)
)
(1111111)

This code corrects one error in any qubit.

More general stabilizer codes can be constructed which encode k
bits into n bits and correct t errors, for various values of (n,k,t).

85

Fault Tolerant Computing

Classically: Quantum Mechanically:

11101 11111

QECC QECC
QECC QECC
01101 ’ H ‘
Correction Correction
Clean-Up [TT1] [TT1]
01111 QECC QECC

86

T hreshold Theorem

Suppose you have a circuit with n qubits. Then you can make a
circuit with O(nlog®n) qubits such that it can with high proba-
bility tolerate error on a 10~% fraction of the gates (or an error
of size 104 on all of the gates).

The constant 10~4 depends on the exact architecture of your
circuit, how large a blow-up in the size of the circuit you are
willing to tolerate, and how clever you are.

The best ways of doing fault-tolerance may have not yet been
discovered. All the ways discovered to date have fairly large
overhead.

87

NP-complete Problems

These are a class of problems which are notoriously difficult, and
which it is widely believed that a classical computer cannot solve.

A problem is in NP if, given the solution, it can easily be checked.

A problem is NP-complete if it is one of the hardest problems
in NP: i.e., if it can be solved efficiently, then all NP-complete
problems can be solved efficiently.

Can a quantum computer solve NP-complete problems?

We don’'t know. We suspect not.

88

The complexity classes P and NP
have probabilistic and quantum
analogs.

The quantum analogs contain the
probabilistic analogs, which in turn
contain the original classes. They
are all contained in polynomial
space, which is in turn contained in
exponential time.

This means any computation we
can do with 7T steps on a quantum
computer can be done in Xl steps
on a classical computer.

EXPTIME

|
PSPACE

N

MA
BQP

AN / \NP
BPP\P/

89

