
Quantum Computing

Peter Shor

M.I.T.

Cambridge, MA

1

What is the difference between a computer and a physics exper-

iment?

2

One answer:

A computer answers mathematical questions.

A physics experiment answers physical questions.

3

Using computers to

test whether two

bodies fall at the

same rate

4

Another answer:

A physics experiment is a big, custom-built, finicky, piece of

apparatus.

A computer is a little box that sits on your desk (or in your

briefcase).

5

6

Physics experiment

Computer

7

Another answer:

You don’t need to build a new computer for each mathematical

question you want answered.

8

The mathematical theory of computing started in the 1930’s

(before computers)

After Gödel proved his famous incompleteness theorem, it was

followed by four papers giving a distinction between computable

and uncomputable functions

(Church, Turing, Kleene, Post, ca. 1936)

These papers contained three definitions of computable func-

tions which looked quite different.

9

Universality of computation I.

Church-Turing thesis:
A Turing machine can perform any computation that any (phys-

ical) device can perform.

(Turing, Church, ca. 1936).

10

With the development of practical computers, the distinction be-

tween uncomputable and computable become much too coarse.

To be practical, a program must compute a function in a rea-

sonable amount of time (in years, at the longest).

11

Theoretical computer scientists consider an algorithm efficient

if its running time is a polynomial function of the size n of its

input. (n2, n3, n4, etc.)

The class of problems solvable with polynomial-time algorithms

is called P

This is a reasonable compromise between theory and practice.

12

For the definition of P (polynomial-time solvable problems) to

be meaningful, you need to know that it doesn’t depend on the

exact type of computer you use.

13

Universality of computation revisited.

This led various computer scientists to propose the

Quantitative Church’s Thesis (Cobham)

A Turing machine can perform efficiently any computation that

any (physical) device can perform efficiently.

(Various theoretical computer scientists, 1960’s).

If quantum computers can be built, this would imply this “folk

thesis” is not true.

14

Misconceptions about Quantum Computers

False: Quantum computers would be able to speed up all com-

putations.

Quantum computers are not just faster versions of classical computers.

They would speed up some problems by large factors and other problems not

at all.

The fact that this misconception is so widespread shows that the public has

absorbed the Quantitative Church’s Thesis.

A single step on a quantum computer is almost certain to take longer than a

single step on a classical computer. Quantum computers speed up computa-

tions by drastically reducing the number of steps needed.

15

Where would you look for counterexamples for the Quantitative

Church-Turing thesis?

Maybe in physical systems that are hard to simulate.

16

Richard Feynman Yuri Manin

• Simulating physics using a digital computer seems inherently
exponentially inefficient. (Feynman, 1982, R. P. Poplavskii,
1975)

• A “quantum computer” might be able to get around this
problem. (Feynman, 1982; Manin, 1980)

17

In 1985, David Deutsch asked whether quantum computers might

speed up computation for non-quantum mechanics problems.

Problems with potential speed-ups by quantum computers were

found by:

David Deutsch and Richard Jozsa (1992)

André Berthiaume and Gilles Brassard (1992)

Ethan Bernstein and Umesh Vazirani (1993)

Dan Simon (1993)

18

What do we know quantum computers are good for?

• Simulating/exploring quantum mechanical systems efficiently.

[Richard Feynman/Yuri Manin]

• Finding periodicity.

Simon’s problem [Dan Simon]
Factoring large integers and finding discrete logarithms effi-
ciently [PWS]
Pell’s equation and other number theory questions[Sean Hall-

gren].

• Searching large solution spaces more efficiently [Lov Grover]

Amplifying the success probability of (quantum) algorithms
with small success probabilities.

19

Searching

Quantum computers give a quadratic speed-up for exhastive

search problems (Lov Grover). Looking through N possibilities

takes

• expected time N/2 on a classical computer.

• expected time π
4

√
N on a quantum computer.

20

Factoring

Quantum computers give an exponential speed up for factor-

ing large integers.

Given a number N , find A,B < N so

A ∗ B = N

21

Factoring an L-bit number

Best classical method is the number field sieve (Pollard)

time: exp(cL1/3(logL)2/3).

Quantum computer (Shor)

time cL2(logL)(log logL)

22

Practical implications

Security on the Internet is based on public key cryptography.

The most widely used (and most trusted) public key cryptosys-

tems are based on the difficulty of factoring and of finding dis-

crete logarithms.

Both of these are vulnerable to attacks by a quantum computer.

23

What are the fundamental physical principles on which a quan-

tum computer operates?

This is a difficult question, as quantum computers seem to much

of the structure of quantum mechanics. They use:

• The superposition principle

• High dimensionality of quantum state spaces

• Quantum interference

• Quantum entanglement

24

The Superposition Principle:

If a quantum system can be in one of two mutually distinguish-

able states |A〉 and |B〉, it can be both these states at once.

Namely, it can be in the superposition of states

α |A〉 + β |B〉
where α and β are complex numbers and |α|2 + |β|2 = 1.

If you look at the system, the chance of seeing it in state |A〉 is

|α|2 and in state |B〉 is |β|2.

25

The Superposition Principle (in mathematics)

Quantum states are represented by unit vectors in a complex

vector space.

Multiplying a quantum states by a unit complex phase does not

change the essential quantum state.

Two quantum states are distinguishable if they are represented

by orthogonal vectors.

26

A qubit is a quantum system with 2 distinguishable states, i.e.,

a 2-dimensional state space.

If you have a polarized photon, there can only be two distin-

guishable states, for example, vertical | l〉 and horizontal |↔〉
polarizations.

All other states can be made from these two.

| րւ 〉 =
1√
2
|↔〉 +

1√
2
| l〉 | ցտ 〉 =

1√
2
|↔〉 − 1√

2
| l〉

∣

∣

∣⊂⊲
〉

=
1√
2
|↔〉 +

i√
2
| l〉

∣

∣

∣ ⊳⊃
〉

=
1√
2
|↔〉 − i√

2
| l〉

27

If you have two qubits, they can be in any superposition of the

four states

|00〉 |01〉 |10〉 |11〉

This includes states such as

1√
2
(|01〉 − |10〉)

where neither qubit alone has a definite state.

Such states are called entangled.

28

If you have n qubits, their joint state can be described by a

superposition of 2n basis states.

These basis states can be taken to be:

|000 . . .00〉 |000 . . .01〉 · · · |111 . . .11〉

The high dimensionality of this space is one of the places where

quantum computing obtains its power.

29

The “circuit model” for quantum computa-
tion

To compute, we need to

• Put the input into the computer.

• Change the state of the computer.

• Get the output out of the computer.

30

Input

Start the computer in the state corresponding to the input in

binary, e.g.

|100101101〉 .

We may need extra workspace for the algorithm. We then need

to add 0s to the starting configuration.

|100101101〉 ⊗ |0000000000〉 .

(Alternatively we may permit an operation which adds additional

qubits in the middle of the computation.)

31

Output

At the end of the computation, the computer is in some state

2k−1
∑

i=0

αi | i〉

We can NOT measure the state completely, because of the

Heisenberg uncertainty principle.

We assume we measure in the canonical basis |000...00〉, |000...01〉 ,

. . . |111...11〉

We observe the output | i〉 with probability |αi|2.

32

Output

When we observe the computer, we get a sample from a proba-

bility distribution.

Because of quantum mechanics, this is inherently a probabilistic

process. We say that the computer computes a function cor-

rectly if we are able to get output that gives us the right answer

with high probability.

33

The Linearity Principle

The evolution of an isolated quantum system is linear.

Because linear transformations can be represented as a matrix,

the evolution of pure states in an isolated quantum system can

be described by a matrix operating on the state space.

To preserve probabilities, the matrices must be unitary.

34

Computation

Apply transformations to qubits two at a time.

0 1

0

|1>

Quantum GateClassical Gate

|01> - |10>

|0>+|1>

A computation (program) is a sequence of quantum gates ap-

plied to one or two qubits at a time.

35

Why at most two qubits at a time?

If we allowed unitary gates that transformed all the qubits, then

we could choose a gate that took the input to the desired output

in one step, and experimental physicists would have no clue as

to how to implement it. This wouldn’t be helpful.

Three-qubit gates are theoretically not any more powerful than

two-input gates (they reduce computation time by a constant in

general), and much harder to implement experimentally.

36

Quantum Gates

A quantum gate is a linear transformation on a 2-dimensional

(1-qubit) or 4-dimensional (2-qubit) space.

It is thus a 2 × 2 or 4 × 4 matrix.

In order to preserve probabilities, it must take unit length vectors

to unit length vectors. This means the matrix is unitary. That

is, if G is the gate, G† = G−1.

37

Quantum Gates

How does a quantum gate on two qubits (4×4 matrix) operate on

the quantum state space of n qubits (a 2n-dimensional vector).

You have to take the tensor product of the quantum gate on

those two qubits with the identity matrix on the remaining qubits.

38

Interference

Because superpositions of states can have complex coefficients, you can make
qubits interfere with themselves.

Applying the transformation

|0〉 → 1√
2
(|0〉 + |1〉)

|1〉 → 1√
2
(|1〉 − |0〉)

twice takes |0〉 → |1〉 and |1〉 → − |0〉, since the |0〉 terms in the result cancel
out.

This is written in matrices as

(

1/
√

2 −1/
√

2

1/
√

2 1/
√

2

)2

=

(

0 −1
1 0

)

.

Without interference, a quantum computer can be simulated by a digital

computer with a random number generator.

39

Idea behind fast quantum computer algorithms:

Arrange the algorithm to make all the computational paths that

produce the wrong answer destructively interfere, and the com-

putational paths that produce the right answer constructively

interfere, so as to greatly increase the probability of obtaining

the right answer.

This is generally very difficult to figure out how to accomplish,

and this may account for the fact that so few quantum algo-

rithms have been discovered.

40

Idea Behind All Fast Factoring Algorithms

To factor a large number N , Find numbers a and b so that

a2 = b2 mod N

a 6= ±b mod N

Then

a2 − b2 = (a + b)(a − b) = cN

We now extract one factor from a + b and another from a − b.

We can use Euclid’s algorithm for greatest common divisors to

find the factors; the greatest common divisor of a+ b and N will

be one factor.

41

Example: Factoring 33

Take the numbers a = 10 and b = 1. Then 100 divided by 33

has remainder 1, so

102 = 12 mod 33

Then

102 − 12 = (10 + 1)(10 − 1) = 33.

The first factor gives 11, since gcd(11,33) = 11;

the second gives 3, since gcd(9,33) = 3.

Thus, we find 33 = 11 ∗ 3.

42

Quantum Factoring Idea

To factor a large number N :

Find the smallest r > 0 such that xr ≡ 1 (mod N).

(xr/2 + 1)(xr/2 − 1) ≡ 0 (mod N).

We now get two factors by taking the greatest common divisors

gcd(xr/2 + 1, N)

gcd(xr/2 − 1, N)

We can show this gives a non-trivial factor for at least half of

the residues x(mod N).

43

How do we find r with

xr ≡ 1 (mod N)?

Find the period r of the sequence xa (mod N).

44

Example: Factoring 33

Take x = 5. Then (mod 33) we get

1 5 52 53 54 55 56 57 58 59 510 511

1 5 25 26 31 23 16 14 4 20 1 5

The period r is 10, and

xr/2 = 55 = 23 mod 33.

Then

33 divides (55 + 1)(55 − 1) = (23 + 1)(23 − 1) = 24 ∗ 22

Taking greatest common divisors, 24 gives us the factor 3, and

22 gives us the factor 11, and we find 33 = 3 ∗ 11.

45

Need to find the period of xa (mod N).

Idea: Use the Fourier transform

Problem: The sequence has an exponentially long period

Solution: Use the exponentially large state space of a quantum

computer to take an exponentially large Fourier transform effi-

ciently.

46

Factoring L-bit numbers

We will work with quantum superpositions of two registers

Register 1 Register 2
2L bits L bits

We will not give the fine details of the algorithms.

These involve more workspace

(3L workspace is easy, ≪ L workspace is possible).

47

Quantum Fourier Transform over Z2k

Have k qubits

|x〉 → 1

2k/2

2k−1
∑

y=0

exp(
−2πixy

2k
) | y〉

Need to break this into a series of 2-qubit gates.

The Cooley-Tukey Fast Fourier Transform algorithm can be

adapted to ≈ k2 steps on a quantum computer.

48

Quantum Fourier Transform over Z2k

|x〉 → 1

2k/2

2k−1
∑

y=0

exp(
−2πixy

2k
) | y〉

Break x and y up into bits: x =
∑

xβ2
β

For each pair of bits xα and yβ, either:

If α + β ≥ k, then we have exp(−2πixy2α+β

2k) = 1 and we don’t

have to do anything.

If α + β < k − 1: then we use
∣

∣

∣xαyβ

〉

→ exp(−2πixy2α+β

2k)
∣

∣

∣xαyβ

〉

.

If α + β = k − 1, then we use |xα〉 →
∑1

yβ=0(−1)xαyβ
∣

∣

∣ yβ

〉

49

Reversible Computation

We can do classical computations on a quantum computer as

long as we can do these classical computations reversibly. That

is, with gates each of whose possible outputs maps uniquely back

to the inputs.

Any classical computation can be made reversible as long as we

keep the input around.

50

Making Computations Reversible

In general, if we have a classical computation, then we can write

reversibly it as

| input〉 |000 . . .0〉 → | output〉 | garbage〉
where the | garbage〉 is extra information that we have store to

make it reversible.

We can’t use it for the factoring algorithm in this form, since

the garbage destroys the interference. However, we can copy the

output into another register

| output〉 | garbage〉 |000 . . .0〉 → | output〉 | garbage〉 | output〉
Now, we can undo the computation on the first two registers.

| output〉 | garbage〉 | output〉 → | input〉 |000 . . .0〉 | output〉
51

Reversible Gates

The 3-bit Toffoli gate is a universal gate for reversible compu-

tation

(x, y, z) → (x, y, z ⊕ (x ∧ y))

We can get AND, OR, and NOT from it by putting certain

constants in the input. For example, x = 1, y = 1 gives NOT z

in the output, and z = 0 gives (x AND y).

Recall that AND and NOT gates are universal for classical com-

putation.

This Toffoli gate can be implemented as a sequence of 2-qubit

quantum gates.

52

|0〉 |0〉 Factoring Algorithm

↓ ≈ L steps

1

2L

22L−1
∑

a=0

| a〉 |0〉

↓ ≈ L2 logL log logL steps

1

2L

22L−1
∑

a=0

| a〉 |xa (mod N)〉

↓ ≈ L2 steps

1

23L/2

22L−1
∑

a=0

2L−1
∑

c=0

| c〉 |xa (mod N)〉 e−2πiac/2L

Observe computer.

53

We need to find the probability amplitude on

| c〉 |xa (mod N)〉
in the superposition

1

23L/2

22L−1
∑

a=0

2L−1
∑

c=0

| c〉 |xa (mod N)〉 e−2πiac/2L

Many different values of a give the same value of xa (mod N).

We have to add the coefficients e−2πiac/2L
on all of them.

54

Let a0 be the smallest non-negative integer such that

xa0 ≡ xa(mod N).

Then xa0, xa0+r, xa0+2r, ... are all equal (mod N).

Each contributes to the amplitude on

| c〉 |xa (mod N)〉
with the coefficient e−2πi(a0+br)c/2L

.

The a0 term can be dropped, since it just contributes a phase

e−2πia0c/2L
to the sum.

55

Our quantum computer was (before observation) in the state

1

23L/2

22L−1
∑

a=0

2L−1
∑

c=0

| c〉 |xa (mod N)〉 e−2πiac/2L

We concentrate on what happens when we observe a paticular
|xa0 (mod N)〉. Recall that a = a0 + br. We can make this
substitution, and remove the e−2πia0c/2L

factor.

We thus observe | c〉 with probability proporitional to
∣

∣

∣

∣

∣

∣

∣

≈22L/r
∑

b=0

e−2πibrc/2L

∣

∣

∣

∣

∣

∣

∣

2

This is a geometric sum which is close to 0 unless
rc

2L
= d + O(r/22L)

for some integer d.

56

We know

rc

2L
= d + O(r/22L).

Thus
c

2L
=

d

r
+ O

(

1

22L

)

.

with r < N .

But L was the number of bits in N , so 22L ≈ N2.

This means d
r will be one of the closest fractions to c

2L with

numerator and denominator less than N .

We can use an algorithm called continued fractions to find d
r,

and then use r to factor N .

57

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 32 64 96 128 160 192 224 256

P

c

Example: Factoring 33

The period r is 10.

58

Difficulties of Quantum Computing

Quantum states are notoriously hard to manipulate.

To do 1010 steps on a quantum computer without error cor-

rection, and still come up with the right answer, you would need

to perform each step with accuracy one part in 1010.

59

The same objection was raised to scaling up classical computers

in the 1950’s.

Von Neumann showed that you could build reliable classical com-

puters out of unreliable classical components.

Currently, we don’t use many of these techniques because we

have extremely reliable integrated circuits, so we don’t need

them.

60

Main techniques for fault-tolerance

on classical computers.

• Consistency Checks

• Checkpointing

• Error-Correcting Codes

• Massive Redundancy

61

Quantum Computing Difficulties

Heisenberg Uncertainty Principle:
You cannot measure a quantum state without changing it.

No-Cloning Theorem:
You cannot duplicate an unknown quantum state.

62

Can you use these techniques on a quantum computer?

• Consistency Checks

• Checkpointing

• Error-Correcting Codes

• Massive Redundancy

63

Can you use these techniques on a quantum computer?

• Consistency Checks

Doesn’t get you far on either classical or quantum computers.

• Checkpointing

• Error-Correcting Codes

• Massive Redundancy

64

Can you use these techniques on a quantum computer?

• Consistency Checks

Doesn’t get you far on either classical or quantum computers.

• Checkpointing

Cannot use on a quantum computer.

• Error-Correcting Codes

• Massive Redundancy

65

Can you use these techniques on a quantum computer?

• Consistency Checks

Doesn’t get you far on either classical or quantum computers.

• Checkpointing

Cannot use on a quantum computer.

• Error-Correcting Codes

Works well quantum mechanically.

• Massive Redundancy

66

Can you use these techniques on a quantum computer?

• Consistency Checks

Doesn’t get you far on either classical or quantum computers.

• Checkpointing

Cannot use on a quantum computer.

• Error-Correcting Codes

Works well quantum mechanically.

• Massive Redundancy

Adaptable to quantum computers, but does not work well.

67

Quantum error correction

Quantum error correcting codes exist.

They can be used to make quantum computers fault-tolerant.

so that you only need to perform each step with accuracy ap-

proximately one part in 104.

68

How do quantum error-correcting codes get around the no-cloning

theorem Heisenberg uncertainty principle?

Measuring one of the qubits gives NO information about the en-

coded state, so the remaining qubits can retain all the informa-

tion about the encoded state without violating the non-cloning

theorem.

We design the codes so that we can measure the error without

measuring (or disturbing) the encoded state.

This means that in our codes, we must have all likely errors or-

thogonal to the encoded data

We can then measure and fix the error without destroying the

encoded data.

69

Repetition Code

The simplest classical error correcting code is the repetition

code.

0 → 000

1 → 111

What about the quantum version?

|0〉 → |000〉
|1〉 → |111〉

70

Quantum Bit Error Correcting Code

|0〉 → |000〉
|1〉 → |111〉

This works against bit flips

σx =

(

0 1
1 0

)

σx(2) :
|000〉 → |010〉
|111〉 → |101〉

Can measure “which bit is different?”

Possible answers: none, bit 1, bit 2, bit 3.

Applying σx to incorrect bit corrects error.

71

Quantum Bit Error Correcting Code

This also works for superpositions of encoded |0〉 and |1〉.

σx(2) : α |000〉 + β |111〉 → α |010〉 + β |101〉

When this is measured, the result is “bit 2 is flipped,” and since

the measurement gives the same answer for both elements of

the superposition, the superposition is not destroyed.

Thus, bit 2 can now be corrected by applying σx(2).

72

Quantum Bit Error Correcting Code

|0〉 → |000〉
|1〉 → |111〉

What about a phase flip error σz =

(

1 0
0 −1

)

?

|E0〉 = |000〉 → |000〉 = |E0〉
|E1〉 = |111〉 → − |111〉 = |E1〉

A phase flip on any qubit gives a phase flip on the encoded

qubit, so phase flips are three times as likely. The same thing

happens for a general phase error

(

1 0
0 eiθ

)

.

73

Another 3-qubit code

The unitary transformation H = 1√
2

(

1 1
1 −1

)

takes

phase flips to bit flips and vice versa: H

(

0 1
1 0

)

H =

(

1 0
0 −1

)

Suppose we apply H to the 3 encoding qubits and to the encoded

qubit. What does this do to our code?

We get a new code

|0〉 → 1

2
(|000〉 + |011〉 + |101〉 + |110〉)

|1〉 → 1

2
(|100〉 + |010〉 + |001〉 + |111〉)

74

Phase error correcting code

|0〉 → 1

2
(|000〉 + |011〉 + |101〉 + |110〉)

|1〉 → 1

2
(|100〉 + |010〉 + |001〉 + |111〉)

A phase flip on any qubit is correctable. E.g.

(

1 0
0 −1

)

on

bit 3.

σz(3) |E0〉 =
1

2
(|000〉 − |011〉 − |101〉 + |110〉)

This is orthogonal to σz(a) |Eb〉 unless a = 3, b = 0.

So we can measure “which qubit has a phase flip?” and then

correct this qubit.

75

Phase error correcting code

|0〉 → 1

2
(|000〉 + |011〉 + |101〉 + |110〉)

|1〉 → 1

2
(|100〉 + |010〉 + |001〉 + |111〉)

|0〉 is encoded as the superposition of states with an odd number

of 0’s;

|1〉 is encoded as the superposition of states with an even number

of 0’s.

So a bit flip on any qubit exchanges 0 and 1.

Thus a bit flip is three times as likely as on an unencoded state.

76

The 9-qubit code

First quantum error correcting code discovered:

|0〉 → 1

2
(|000000000〉 + |000111111〉 + |111000111〉 + |111111000〉)

|1〉 → 1

2
(|111000000〉 + |000111000〉 + |000000111〉 + |111111111〉)

This code will correct any error in one of the nine qubits.

It is composed of two codes which are concatenated: the outer

one corrects phase errors, and the inner one corrects bit errors.

If you have a bit flip:

(

0 1
1 0

)

, it is corrected by comparison with

the other two qubits in its group of three.

77

The 9-qubit code

|0〉 → 1

2
(|000000000〉 + |000111111〉 + |111000111〉 + |111111000〉)

|1〉 → 1

2
(|111000000〉 + |000111000〉 + |000000111〉 + |111111111〉)

If you have a phase flip on a single qubit:

(

1 0
0 −1

)

, it gives

the same result as a phase flip on any of the other qubits in the

same group of three.

The correction works via the groups of three bits exactly as it

does in the three-qubit phase-correcting code.

78

t-error correcting codes

By repeating each qubit 2t+1 times instead of three in the above

construction, you get a t-error correcting code which maps one

qubit to (2t + 1)2 qubits.

79

Theorem: If you can correct a tensor product of t of any of the

following three types of error

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

then you can fix any error restricted to t qubits.

Proof Sketch:

The identity matrix and σx, σy and σz for a basis for 2×2 matrices.

One can thus decompose any error matrix into a sum of these

four matrices. If the error only affects t qubits, it applies the

identity matrix to the other qubits, so the decomposition never

has more than t terms in the tensor product not equal to the

identity.

80

Example in 3-qubit phase code

|0〉 → 1

2
(|000〉 + |011〉 + |101〉 + |110〉)

|1〉 → 1

2
(|100〉 + |010〉 + |001〉 + |111〉)

Suppose we apply a general phase error

(

1 0
0 e2iθ

)

to qubit 1,

say. Can we correct this?

Rewrite error as

(

e−iθ 0
0 eiθ

)

We can do this, since global phase changes are immaterial.

|E0〉 → e−iθ(|000〉 + |011〉) + eiθ(|101〉 + |110〉)
= cos θ(|000〉 + |011〉 + |101〉 + |110〉)
−i sin θ(|000〉 + |011〉 − |101〉 − |110〉)

81

Correcting an arbitrary phase error

If we had a general phase error of

(

1 0
0 e2iθ

)

on qubit 1, we got

the state

cos θ(|000〉 + |011〉 + |101〉 + |110〉)
−i sin θ(|000〉 + |011〉 − |101〉 − |110〉)

When we measure “which bit has a phase flip,” we get “bit 1”

with probability | sin2 θ| and “no error’ with probability | cos2 θ|.

The state has “collapsed,” so our measurement is now correct.

82

We have a 9-qubit code that can correct any error in 1 qubit.

How can we make more general quantum codes?

83

Better classical codes exist than repetition codes.

The [7,4,3] Hamming code, for example.

The codewords are the binary row space of

1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1
1 1 1 1 1 1 1

This code maps 4 bits to 7 bits. The minimum distance between

two codewords is 3, so it can correct one error.

84

Quantum Hamming code

|0〉 → 1√
8

|0000000〉 + |1110100〉
+ |0111010〉 + |0011101〉
+ |1001110〉 + |0100111〉
+ |1010011〉 + |1101001〉

|1〉 → 1√
8

|1100010〉 + |0110001〉
+ |1011000〉 + |0101100〉
+ |0010110〉 + |0001011〉
+ |1000101〉 + |1111111〉

This code corrects one error in any qubit.

More general stabilizer codes can be constructed which encode k

bits into n bits and correct t errors, for various values of (n, k, t).

85

Fault Tolerant Computing

Classically: Quantum Mechanically:

11 01 1 11 1 11

11 10 1

0

Clean-Up

1 01 1

QECC

QECC

QECC

CorrectionCorrection

QECC

QECC

QECC

86

Threshold Theorem

Suppose you have a circuit with n qubits. Then you can make a

circuit with O(n logc n) qubits such that it can with high proba-

bility tolerate error on a 10−4 fraction of the gates (or an error

of size 10−4 on all of the gates).

The constant 10−4 depends on the exact architecture of your

circuit, how large a blow-up in the size of the circuit you are

willing to tolerate, and how clever you are.

The best ways of doing fault-tolerance may have not yet been

discovered. All the ways discovered to date have fairly large

overhead.

87

NP-complete Problems

These are a class of problems which are notoriously difficult, and

which it is widely believed that a classical computer cannot solve.

A problem is in NP if, given the solution, it can easily be checked.

A problem is NP-complete if it is one of the hardest problems

in NP; i.e., if it can be solved efficiently, then all NP-complete

problems can be solved efficiently.

Can a quantum computer solve NP-complete problems?

We don’t know. We suspect not.

88

The complexity classes P and NP

have probabilistic and quantum

analogs.

The quantum analogs contain the

probabilistic analogs, which in turn

contain the original classes. They

are all contained in polynomial

space, which is in turn contained in

exponential time.

This means any computation we

can do with T steps on a quantum

computer can be done in 2T steps

on a classical computer.

BPP

BQP

PSPACE

QMA

MA

NP

P

EXPTIME

89

