Statistical mechanics of Coulomb gases as a quantum theory on Riemann surfaces

Alex Kamenev
W. I. Fine Theoretical Physics Institute, U of Minnesota

Ion channels of cell membranes

a-Hemolysin

THE NOBEL PRIZE I N CHEMISTRY 2003

Unr
 0
 Unravelling the secrets of cell channels

In 1998 Roderick MacKinnon determined for the first time at high resolution the

How does water actually pass through the cell membrane? The answer eluded researchers
for over a hundred years. It was Peter Agre who finally unravelled the secret. By a happy chance he found a protein that is needed for water to pass in and out. He had discovered

Angewandte

Chemie
structure of an ion channel. As so often in biochemistry form and function are intimately connected. By showing what the protein looked like at the atomic level, he also the atomic level,
realized how it functions.

Simple Approximation

$$
\begin{aligned}
& \varepsilon_{\text {water }} \approx 81 \\
& \varepsilon_{\text {lipid }}^{\prime} \approx 2 \ll \varepsilon_{\text {water }}
\end{aligned}
$$

Gauss theorem:

$$
2 \pi a^{2} \varepsilon_{\text {water }} E_{0}=4 \pi e
$$

$$
E_{0}=\frac{2 e}{\varepsilon a^{2}}
$$

Energy:

$$
U_{L}=\frac{\varepsilon E_{0}^{2}}{8 \pi} \pi a^{2} L \approx 4 k_{B} T
$$

Mhy narrow channels?

Water-filled carbon nanotubes

NanoFluidics

Nevin Naguib, ${ }^{\dagger}$ Haihui Ye, ${ }^{\dagger}$ Yury Gogotsi, ${ }^{\star, \dagger}$ Almila G. Yazicioglu, ${ }^{\ddagger}$ Constantine M. Megaridis, ${ }^{\ddagger}$ and Masahiro Yoshimura ${ }^{\S}$

Nanoletters, 2004

1. Nanofluidic transistor. (a) Schematic of a nanofluidic transistor Rohit Karnik and Kenneth Castelino Arun Majumdar APPLIED PHYSICS LETTERS 88, 123114 (2006)

1D Coulomb Interactions

$>$ Maximum energy does NOT depend on the number of ions.

$$
U_{L}=\frac{\varepsilon E_{0}^{2}}{8 \pi} \pi a^{2} L
$$

Entropy !

Free ions enter the channel, increasing the entropy !

Statistical Mechanics of 1D Coulomb gas:

$$
\mathcal{Z}_{L}=\sum_{N_{1}, N_{2}=0}^{\infty} \frac{f_{1}^{N_{1}} f_{2}^{N_{2}}}{N_{1}!N_{2}!} \prod_{i=1}^{N_{1}} \int_{0}^{L} d x_{i} \prod_{j=1}^{N_{2}} \int_{0}^{L} d x_{j} e^{-U / k_{B} T}
$$

$$
\equiv \int \mathcal{D} \theta(x) e^{-\frac{x_{T}}{2} \int d x\left[\frac{1}{2}\left(\partial_{x} \theta\right)^{2}-\frac{4 \alpha}{x_{T}^{2}} \cos \theta(x)\right]}
$$

"Sine-Gordon" quantum mechanics:

$$
\hat{H}=-\partial_{\theta}^{2}-2 \alpha \cos \theta
$$

Bare coupling constant (concentration)

Quantum mechanics:

$$
\begin{gathered}
\hat{H}=-\partial_{\theta}^{2}-2 \alpha \cos \theta \\
Z=\operatorname{Tr}\left\{e^{-\hat{H} L}\right\} \approx e^{-\varepsilon_{0}(q) L}
\end{gathered}
$$

Pressure $=$ groundstate energy
Transport barrier $=$ width of the lowest Bloch band

Electric field is conserved modulo $2 \mathrm{E}_{0}$

Multi-valent ions:

$\mathbf{C a}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Fe}^{3+}$

$$
\hat{H}_{(2,1)}=-\partial_{\theta}^{2}-\alpha\left(e^{2 i \theta}+2 e^{-i \theta}\right) ;
$$

$$
\hat{H}_{(3,1)}=-\partial_{\theta}^{2}-\alpha\left(e^{3 i \theta}+3 e^{-i \theta}\right)
$$

$\mathcal{P T}$ Symmetry

$$
\theta \rightarrow-\theta \quad i \rightarrow-i
$$

$>$ Eigenvalues are either real or complex-conjugated pairs

Spectra of $\quad \hat{H}_{(2,1)}=-\partial_{\theta}^{2}-\alpha\left(e^{2 i \theta}+2 e^{-i \theta}\right)$;

More Spectra

$\alpha=200$

Semiclassical constant energy surfaces

$$
\begin{aligned}
& z=e^{i \theta} \\
& u=2 \epsilon / 3 \alpha
\end{aligned}
$$

$$
\frac{3}{2} u=p^{2}-\left(\frac{z_{1}^{2}}{2}+\frac{1}{z}\right)
$$

Family of complex algebraic curves, parameterized by moduli

Semiclassical actions and their monodromies

No need to know classical trajectory: action along any periodic orbit is a superposition of two basic cycles.

$$
S_{j}(u)=\oint_{\gamma_{j}} \lambda(u)
$$

$$
\lambda(u)=p(\theta) d \theta=p(z) \frac{d z}{i z}=\frac{i}{z^{3 / 2}}\left(\frac{1}{2} z^{3}+\frac{3}{2} u z+1\right)^{1 / 2} d z
$$

(b)

Semiclassical actions and their monodromies

Singular points in the moduli space, where cuts collide

$$
(u+1) \rightarrow(u+1) e^{2 \pi i}
$$

$$
\binom{S_{0}(u)}{S_{1}(u)} \rightarrow\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)\binom{S_{0}(u)}{S_{1}(u)}
$$

$$
S_{1,2}(u)=Q_{1,2}(u) \mp \frac{i}{2 \pi} S_{0}(u) \ln (1+u)
$$

$$
Q_{1}+Q_{2}=S_{0}
$$

Picard - Fuchs Equation

Since there are only two linearly independent holomorphic forms on genus one surface (de Rahm theorem),
$\left\{\lambda^{\prime \prime}(u), \lambda^{\prime}(u), \lambda(u)\right\}$
are linearly dependent forms!
$\mathcal{L}=\left(u^{3}+1\right) \partial_{u}^{2}+u / 4$
$\mathcal{L} \lambda(u)=\frac{d}{d z}\left[\frac{i}{4 \sqrt{2}} \frac{-3 z^{2}+u\left(z^{3}-4\right)}{z^{1 / 2}\left(2+3 u z+z^{3}\right)^{1 / 2}}\right] d z$
$\oint_{\gamma_{j}} \mathcal{L} \lambda(u)=\mathcal{L} S_{j}(u)=0$

Picard - Fuchs Equation

The actions satisfy second order ODE:

$$
\left(u^{3}+1\right) S_{j}^{\prime \prime}(u)+\frac{u}{4} S_{j}(u)=0
$$

Two independent solutions are given by hypergeometric functions:

$$
F_{0}\left(u^{3}\right) \text { and } u F_{1}\left(u^{3}\right)
$$

$$
F_{0}\left(u^{3}\right)={ }_{2} F_{1}\left(-\frac{1}{6},-\frac{1}{6} ; \frac{2}{3} ;-u^{3}\right), \quad F_{1}\left(u^{3}\right)={ }_{2} F_{1}\left(+\frac{1}{6},+\frac{1}{6} ; \frac{4}{3} ;-u^{3}\right)
$$

Solutions of Picard - Fuchs Equation

Classical action at ANY energy along ANY (almost) closed orbit may be written as a linear combination:

$$
S_{j}(u)=C_{j 0} F_{0}\left(u^{3}\right)+C_{j 1} u F_{1}\left(u^{3}\right)
$$

The coefficients may be determined by doing brut-force integration at one (e.g. u=0) specific energy:

$$
\begin{aligned}
& C_{00}=C_{10} e^{\pi i / 3}=C_{20} e^{-\pi i / 3}=\frac{2^{11 / 6} 3 \pi^{3 / 2}}{\Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{1}{3}\right)} \\
& C_{01}=C_{11} e^{-\pi i / 3}=C_{21} e^{\pi i / 3}=\frac{3^{1 / 2} \Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{1}{3}\right)}{2^{11 / 6} \pi^{1 / 2}} .
\end{aligned}
$$

Semiclassical Quantization

Bloch bandwidth = transport barrier

Trivalent salts:

Fe^{3+}

Cl_{3}^{1-}

$$
\hat{H}_{(3,1)}=-\partial_{\theta}^{2}-\alpha\left(e^{3 i \theta}+3 e^{-i \theta \theta}\right) ;
$$

$$
\frac{4}{3} u=p^{2}-\left(\frac{z^{3}}{3}+\frac{1}{z}\right)
$$

Picard - Fuchs equation and its solutions

$$
\left(u^{4}-1\right) S^{(4)}+8 u^{3} S^{(3)}+\frac{217}{18} u^{2} S^{\prime \prime}+u S^{\prime}+\frac{65}{144} S=0
$$

(4,1) Gas

$$
\left(u^{5}+1\right) S^{(4)}(u)+\frac{9 u^{5}-1}{u} S^{(3)}(u)+\frac{235}{16} u^{3} S^{\prime \prime}(u)+\frac{5}{4} u^{2} S^{\prime}(u)+\frac{39}{64} u S(u)=0
$$

$(3,2)$ Gas

$$
\left(u^{5}+1\right) S^{(4)}(u)+\frac{9 u^{5}-1}{u} S^{(3)}(u)+\frac{140}{9} u^{3} S^{\prime \prime}(u)+\frac{5}{4} u^{2} S^{\prime}(u)+\frac{119}{144} u S(u)=0
$$

$(2,1)$ Complex fugacity $\alpha=200 e^{i \phi}$

(a) $\phi=0$

(c) $\phi=\frac{\pi}{4}$

(b) $\phi=\frac{\pi}{6}$

(d) $\phi=\frac{\pi}{3}$

Mixture of $(1,1)$ and $(2,1)$ Coulomb gases

Channels are "'doped" -fixed wall charges

Potassium Channels and the Atomic Basis of Selective Ion Conduction (Nobel Lecture)**

Roderick MacKinnon*
$Z=\operatorname{Tr}\left\{e^{-\hat{H}\left(x_{1}-0\right)} e^{-i \theta} e^{-\hat{H}\left(x_{2}-x_{1}\right.}\right.$

Only one slide to go

$>$ Statistical mechanics of Coulomb gases may be mapped onto NON-HERMITIAN Sine-Gordon quantum mechanics (or QFT, is it integrable?)
$>$ This complex QM is described as a Hamiltonian dynamics on Riemann surfaces with genus > 1
> Tackled by Seiberg-Witten machinery of holomorphic differentials

Tobias Gulden

Michael Janas

Peter Koroteev

W. Fine Theoretical Thysics Institute \mathcal{L} Physics Department, \mathcal{U} of Minnesota

