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Figure 2 | Experimental setup for synthetic electric fields. a, Physical
implementation indicating the two Raman laser beams incident on the BEC
(red arrows) and the physical bias magnetic field B0 (black arrow). The
blue arrow indicates the direction of the synthetic electric field E

⇤. b, The
three mF levels of the F = 1 ground-state manifold are shown as coupled by
the Raman beams. c, Dressed-state eigenenergies as a function of
canonical momentum for the realized coupling strength of ¯h�R = 10.5EL at
a representative detuning ¯h� = �1EL (coloured curves). The grey curves
show the energies of the uncoupled states, and the red curve depicts the
lowest-energy dressed state in which we load the BEC. The black arrow
indicates the dressed BEC’s canonical momentum pcan = q

⇤
A

⇤, where A

⇤ is
the vector potential. d, Vector potentials as measured from the
canonical momentum.

electric field E⇤ = �@A⇤/@t , and the dressed BEC responds as
d(m⇤v)/dt = �r�(r)+q⇤E⇤, where v is the velocity of the dressed
atoms andm⇤v=pcan�q⇤A⇤. Here,1(m⇤v)=�q⇤(Af

⇤ �Ai
⇤) is the

momentum imparted by q⇤E⇤.
We study the physical consequences of sudden temporal changes

of the effective vector potential for the dressed BEC. These changes
are always adiabatic such that the BEC remains in the same
dressed state. We measure the resulting change of the BEC’s
momentum, which is in complete quantitative agreement with our
calculations and constitutes the first observation of synthetic electric
fields for neutral atoms.

Our system (see Fig. 2a) consists of an F =1 87RbBECwith about
1.4⇥105 atoms initially at rest15,16; a small physical magnetic field
B0 Zeeman-shifts each of the spin states mF = 0,±1 by E0,±1. Here,
B0 ⇡ 3.3⇥10�4 T and E�1 ⇡ �E+1 ⇡ gµBB0 � |E0|. The linear and
quadratic Zeeman shifts are h̄!Z = (E�1 �E+1)/2⇡ h⇥2.32 MHz
and �h̄✏ = E0 � (E�1 + E+1)/2 ⇡ �h ⇥ 784 Hz. A pair of laser
beams with wavelength ⌦= 801 nm, intersecting at 90� at the BEC,
couples the mF states with strength �R. These Raman lasers differ
in frequency by 1!L ⇡ !Z and we define the Raman detuning
as � = 1!L � !Z. Here h̄�R ⇡ 10EL and |h̄�| < 60EL, where
EL = h̄2kL2/2m = h⇥ 3.57 kHz and kL =

p
2⇡/⌦ are natural units

of energy and momentum.
When the atoms are rapidly moving or the Raman lasers are

far from resonance (kLv or � � �R), the lasers hardly affect the
atoms. However, for slowly moving and nearly resonant atoms the
three uncoupled states transform into three new dressed states.
The spin and linear-momentum state |kx ,mF = 0i is coupled to
states |kx � 2kL,mF = +1i and |kx + 2kL,mF = �1i, where h̄kx is
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Figure 3 | Change in momentum from the synthetic electric-field kick.
Three distinct sets of data were obtained by applying a synthetic electric
field by changing the vector potential from q

⇤
Ai

⇤ (between +2¯hkL and
�2¯hkL) to q

⇤
Af

⇤. Circles indicate data where the external trap was removed
right before the change in A

⇤, where q

⇤
Af

⇤ = ±2¯hkL (� for red, + for blue
symbols). The black crosses, more visible in the inset, show the amplitude
of canonical momentum oscillations when the trapping potential was left
on after the field kick. The standard deviations are also visible in the inset.
The grey line is a linear fit to the data (circles) yielding slope
�0.996±0.008, where the expected slope is �1.

the momentum of |mF = 0i along x̂ , and 2h̄kLx̂ is the momentum
difference between the two Raman beams. For each kx , the three
dressed states are the energy eigenstates in the presence of Raman
coupling h̄�R (see ref. 2), with energies Ej(kx) shown in Fig. 2c
(grey for uncoupled states, coloured for dressed states); we focus on
atoms in the lowest-energy dressed state. Here the atoms’ energy
(interaction and kinetic) is small compared with the ⇡ 10EL energy
difference between the curves; therefore, the atoms remain within
the lowest-energy dressed-state manifold5, without revealing their
spin and momentum components.

In the low-energy limit, E < EL, dressed atoms have a new
effective Hamiltonian formotion along x̂ ,Hx = (h̄kx �q⇤Ax

⇤)2/2m⇤

(motion along ŷ and ẑ is unaffected); here we choose the gauge
where the momentum of the mF = 0 component h̄kx ⌘ pcan is
the canonical momentum of the dressed state. The red curve
in Fig. 2c shows the eigenvalues of Hx for q⇤Ax

⇤ > 0, indicating
that at equilibrium pcan = pmin = q⇤Ax

⇤ (see ref. 2). Although this
dressed BEC is at rest (v = @Hx/@ h̄kx = 0, zero group velocity), it is
composed of three bare spin states eachwith a differentmomentum,
among which the momentum of |mF = 0i is h̄kx = pcan. None of
its three bare spin components has zero momentum, whereas the
BEC’smomentum—theweighted average of the three—is zero.

We transfer the BEC initially in |mF = �1i into the lowest-
energy dressed state with A⇤ = A⇤x̂ (see ref. 2 for a complete
technical discussion of loading). At equilibrium, we measure
q⇤A⇤ = pcan, equal to the momentum of |mF = 0i, by first
removing the coupling fields and trapping potentials and then
allowing the atoms to freely expand for a t = 20.1 ms time of
flight (TOF). Because the three components of the dressed state
{|kx ,mF = 0i,|kx ⌥2kL,mF = ±1i} differ in momentum by ±h̄2kL,
they quickly separate. Further, a Stern–Gerlach field gradient
along ŷ separates the spin components. Figure 2d shows how the
measured and predicted A⇤ depend on the detuning �. With this
calibration, we use � to control A⇤(t ).

We realize a synthetic electric field E⇤ by changing the effective
vector potential from an initial value Ai

⇤ to a final value Af
⇤. We

prepare our BEC at rest with A = Ai
⇤x̂ , and make two types of

measurement of E⇤. In the first, we remove the trapping potential
and then change A⇤ by sweeping the detuning � in 0.8ms, after
which the Raman coupling is turned off in 0.2ms. Thus, E⇤ can
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Figure 2 | Experimental setup for synthetic electric fields. a, Physical
implementation indicating the two Raman laser beams incident on the BEC
(red arrows) and the physical bias magnetic field B0 (black arrow). The
blue arrow indicates the direction of the synthetic electric field E

⇤. b, The
three mF levels of the F = 1 ground-state manifold are shown as coupled by
the Raman beams. c, Dressed-state eigenenergies as a function of
canonical momentum for the realized coupling strength of ¯h�R = 10.5EL at
a representative detuning ¯h� = �1EL (coloured curves). The grey curves
show the energies of the uncoupled states, and the red curve depicts the
lowest-energy dressed state in which we load the BEC. The black arrow
indicates the dressed BEC’s canonical momentum pcan = q

⇤
A

⇤, where A

⇤ is
the vector potential. d, Vector potentials as measured from the
canonical momentum.

electric field E⇤ = �@A⇤/@t , and the dressed BEC responds as
d(m⇤v)/dt = �r�(r)+q⇤E⇤, where v is the velocity of the dressed
atoms andm⇤v=pcan�q⇤A⇤. Here,1(m⇤v)=�q⇤(Af

⇤ �Ai
⇤) is the

momentum imparted by q⇤E⇤.
We study the physical consequences of sudden temporal changes

of the effective vector potential for the dressed BEC. These changes
are always adiabatic such that the BEC remains in the same
dressed state. We measure the resulting change of the BEC’s
momentum, which is in complete quantitative agreement with our
calculations and constitutes the first observation of synthetic electric
fields for neutral atoms.

Our system (see Fig. 2a) consists of an F =1 87RbBECwith about
1.4⇥105 atoms initially at rest15,16; a small physical magnetic field
B0 Zeeman-shifts each of the spin states mF = 0,±1 by E0,±1. Here,
B0 ⇡ 3.3⇥10�4 T and E�1 ⇡ �E+1 ⇡ gµBB0 � |E0|. The linear and
quadratic Zeeman shifts are h̄!Z = (E�1 �E+1)/2⇡ h⇥2.32 MHz
and �h̄✏ = E0 � (E�1 + E+1)/2 ⇡ �h ⇥ 784 Hz. A pair of laser
beams with wavelength ⌦= 801 nm, intersecting at 90� at the BEC,
couples the mF states with strength �R. These Raman lasers differ
in frequency by 1!L ⇡ !Z and we define the Raman detuning
as � = 1!L � !Z. Here h̄�R ⇡ 10EL and |h̄�| < 60EL, where
EL = h̄2kL2/2m = h⇥ 3.57 kHz and kL =

p
2⇡/⌦ are natural units

of energy and momentum.
When the atoms are rapidly moving or the Raman lasers are

far from resonance (kLv or � � �R), the lasers hardly affect the
atoms. However, for slowly moving and nearly resonant atoms the
three uncoupled states transform into three new dressed states.
The spin and linear-momentum state |kx ,mF = 0i is coupled to
states |kx � 2kL,mF = +1i and |kx + 2kL,mF = �1i, where h̄kx is
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Figure 3 | Change in momentum from the synthetic electric-field kick.
Three distinct sets of data were obtained by applying a synthetic electric
field by changing the vector potential from q

⇤
Ai

⇤ (between +2¯hkL and
�2¯hkL) to q

⇤
Af

⇤. Circles indicate data where the external trap was removed
right before the change in A

⇤, where q

⇤
Af

⇤ = ±2¯hkL (� for red, + for blue
symbols). The black crosses, more visible in the inset, show the amplitude
of canonical momentum oscillations when the trapping potential was left
on after the field kick. The standard deviations are also visible in the inset.
The grey line is a linear fit to the data (circles) yielding slope
�0.996±0.008, where the expected slope is �1.

the momentum of |mF = 0i along x̂ , and 2h̄kLx̂ is the momentum
difference between the two Raman beams. For each kx , the three
dressed states are the energy eigenstates in the presence of Raman
coupling h̄�R (see ref. 2), with energies Ej(kx) shown in Fig. 2c
(grey for uncoupled states, coloured for dressed states); we focus on
atoms in the lowest-energy dressed state. Here the atoms’ energy
(interaction and kinetic) is small compared with the ⇡ 10EL energy
difference between the curves; therefore, the atoms remain within
the lowest-energy dressed-state manifold5, without revealing their
spin and momentum components.

In the low-energy limit, E < EL, dressed atoms have a new
effective Hamiltonian formotion along x̂ ,Hx = (h̄kx �q⇤Ax

⇤)2/2m⇤

(motion along ŷ and ẑ is unaffected); here we choose the gauge
where the momentum of the mF = 0 component h̄kx ⌘ pcan is
the canonical momentum of the dressed state. The red curve
in Fig. 2c shows the eigenvalues of Hx for q⇤Ax

⇤ > 0, indicating
that at equilibrium pcan = pmin = q⇤Ax

⇤ (see ref. 2). Although this
dressed BEC is at rest (v = @Hx/@ h̄kx = 0, zero group velocity), it is
composed of three bare spin states eachwith a differentmomentum,
among which the momentum of |mF = 0i is h̄kx = pcan. None of
its three bare spin components has zero momentum, whereas the
BEC’smomentum—theweighted average of the three—is zero.

We transfer the BEC initially in |mF = �1i into the lowest-
energy dressed state with A⇤ = A⇤x̂ (see ref. 2 for a complete
technical discussion of loading). At equilibrium, we measure
q⇤A⇤ = pcan, equal to the momentum of |mF = 0i, by first
removing the coupling fields and trapping potentials and then
allowing the atoms to freely expand for a t = 20.1 ms time of
flight (TOF). Because the three components of the dressed state
{|kx ,mF = 0i,|kx ⌥2kL,mF = ±1i} differ in momentum by ±h̄2kL,
they quickly separate. Further, a Stern–Gerlach field gradient
along ŷ separates the spin components. Figure 2d shows how the
measured and predicted A⇤ depend on the detuning �. With this
calibration, we use � to control A⇤(t ).

We realize a synthetic electric field E⇤ by changing the effective
vector potential from an initial value Ai

⇤ to a final value Af
⇤. We

prepare our BEC at rest with A = Ai
⇤x̂ , and make two types of

measurement of E⇤. In the first, we remove the trapping potential
and then change A⇤ by sweeping the detuning � in 0.8ms, after
which the Raman coupling is turned off in 0.2ms. Thus, E⇤ can
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Figure 4 |Oscillating atoms in the trapping potential after application of a
synthetic electric-field pulse. a,b, Left panels: the vector potential is
changed from q

⇤
Ai

⇤ = 0.75¯hkL (red circles), 0.25¯hkL (black circles) and ⇡0
(green circles), all to q

⇤
Af

⇤ ⇡ 0, and from q

⇤
Ai

⇤ = 0.75¯hkL to
q

⇤
Af

⇤ = 0.35¯hkL (blue symbols). The measured momentum for all circles is
the canonical momentum pcan, and that for the squares is the mechanical
momentum mv. In b, pcan oscillates about q

⇤
Af

⇤ 6= 0 whereas mv oscillates
about zero. Right panels: Energy–momentum dispersion curves for
uncoupled states (grey) and dressed states (coloured). The arrows indicate
oscillations of pcan about q

⇤
Af

⇤ for atoms in the lowest-energy
dressed state.

accelerate the atoms unimpeded, and we measure the change of
the BEC’s velocity from zero. Figure 3 shows the momentum
1p imparted to the atoms by E⇤ as a function of the vector
potential change q⇤(Af

⇤ �Ai
⇤), denoted by red and blue symbols

for q⇤Af
⇤/h̄=�2kL,2kL, respectively (seeMethods for such a choice

of Af
⇤). Owing to the large final detuning h̄� = ⌥60EL, the final

atomic state is a nearly pure spin state, |mF =+1i for q⇤Af
⇤/h̄= 2kL

or |mF = �1i for q⇤Af
⇤/h̄= �2kL. For these undressed final states,

m⇤ = m and 1p = m⇤v = mv , equal to the change in mechanical
momentum. We carried out a linear fit 1p = Cq⇤(Af

⇤ � Ai
⇤) to

the data and obtained C = �0.996(8), in good agreement with
the expected C = �1.

In the second measurement, we examined the time evolution
of atoms that remain trapped and strongly dressed after being
accelerated by E⇤. We changed A⇤ in 1t ⇡ 0.3ms but left the
dressed BEC in the harmonic confining potential for a variable time
before the TOF. As the BEC oscillated in the trap, we monitored
the out-of-equilibrium canonical momentum pcan. It is our access
to the internal degrees of freedom—here projectively measuring
the composition of the Raman dressed state—that enables the
determination of pcan. Figure 4a shows the time evolution of pcan for
different Ai

⇤ all for Af
⇤ ⇡ 0; as expected, pcan oscillates about q⇤Af

⇤.
As 1t is small compared with the ⇡25ms trap period, the change
of momentum is dominated by 1p = �q⇤(Af

⇤ �Ai
⇤), where the

contribution from the trapping force is negligible. This translates
into an oscillation amplitude1p in both pcan andm⇤v =pcan�q⇤Af

⇤

of dressed atoms; the solid crosses in Fig. 3 show the amplitude of
the sinusoidal oscillations in pcan versus Af

⇤ �Ai
⇤ ⇡ �Ai

⇤, proving
that E⇤ has imparted the expectedmomentum kick.

We repeated the experiment with a non-zero q⇤Af
⇤/h̄⇡ 0.35kL,

and observed, as expected, that the oscillations in pcan were offset
from zero (Fig. 4b). This illustrates that the observed quantity is
not the mechanical momentum mv , which should oscillate about
zero. We also measured mv , where v is the population-weighted
average velocity of all spin components (seeMethods); althoughmv
does indeed oscillate about zero, the oscillation amplitude is smaller
than that of pcan. Given the increased effective mass, m⇤/m⇡ 2.5,
the trap frequency ⌫x along x̂ should be reduced by

p
m/m⇤ from

that for undressed atoms, and the oscillation amplitude of mv
should be reduced bym/m⇤ = 0.39(1) from that of pcan. Our results
show that ⌫2

x is reduced by a factor of 0.38(4), as expected, but the
momentum oscillation amplitude is reduced by 0.30(2), slightly less
than predicted (see Methods).

Here we have demonstrated the effects of spatially homogeneous
synthetic electric fields; however, this technique is generally
applicable to create spatially varying forces. Indeed, as the effective
vector potential A⇤ is parameterized by the Raman detuning � and
coupling �, it can be locally patterned through suitable spatially
inhomogeneous magnetic bias fields or vector light shifts. Our
capability of measuring both the canonical momentum and the
mechanical momentum mv is essential. The former characterizes
the effective vector potential for dressed spin states, and the latter
demonstrates that the dressed atom behaves as a usual particle
with an effective mass m⇤ and a well-defined velocity v . For
atoms initially at rest, as the vector potential is changed with the
canonical momentum remaining fixed, the electric field results in
a mechanical momentum. For azimuthal vector potentials, such
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Figure 5 | Example TOF images of the dressed state. a, A dressed state in equilibrium, where pcan is equal to the vector potential q

⇤
A

⇤. Here ¯h� = �1.7EL

and correspondingly q

⇤
A

⇤ = 0.56¯hkL. Images of this type provide the calibration of A

⇤ versus detuning � shown in Fig. 2d. b, A synthetic electric field E

⇤ is
applied to the atoms in a, by changing A

⇤ from the initial q

⇤
Ai

⇤ = 0.56¯hkL to the final q

⇤
Af

⇤ = �2¯hkL; the atoms then acquire a momentum 1p ⇡ 2.56¯hkL.
c, Out-of-equilibrium dressed state where the atoms oscillate in the trap after application of E

⇤ by changing A

⇤ from q

⇤
Ai

⇤ = 0.75¯hkL to q

⇤
Af

⇤ ⇡ 0. Owing
to a larger density of the sample than those in a, scattering halos between |mF = 0i and |mF = 1i are visible, indicating interaction during the TOF.
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tion of a vortex lattice at small effective fields when the
single-mode approximation is valid.

C. Limitations

Naturally, this technique is not without its limitations.
Foremost among them is the range of possible qAx /!kr
shown in Fig. 3, where "=16Er: while the linear expansion
!dashed line" is unbounded, the exact vector potential is
bounded by #1. The reason for this is clear. For example,
the hybridized combination of #+, k̃−1$ and #− , k̃+1$ cannot
give rise to dressed states with minima more positive than
k̃=+1 %where #1$ is minimized absent dressing; Fig. 2!c"&,
nor can the minima be more negative than k̃=−1.

This limitation does not affect the maximum attainable
field, only the spatial range over which this field exists. Spe-
cifically, a linear gradient in $!y" gives rise to the effective
field %z!y" which is subject to '−&

& q%z!y"dy=2!kr. This sim-
ply states that the vector potential—bounded by #!kr /q—is
the integral of the magnetic field. Note, however, that along x̂
the region of large %z has no spatial bounds.

A second limitation of this technique is the assumption of
strong Raman coupling between the Zeeman split states. In
the alkalis, when the detuning from atomic resonance is large
compared to the excited-state fine structure, the two-photon
Raman coupling for 'mF= #1 transitions drops as "('−2,
not '−1 as for the ac Stark shift. As a result, the balance
between off-resonant scattering and " is bounded and cannot
be improved by large detuning. While this is a modest prob-
lem for rubidium !15 nm fine-structure splitting", it is ex-
tremely important for atoms with smaller fine-structure split-
tings: potassium !(4 nm" and lithium !(0.02 nm". This
issue can be avoided for the two-level case, by using 'mf
=0 transitions, e.g., between ground-state hyperfine mani-
folds in the alkalis.

III. THREE-LEVEL SYSTEM

The range of possible effective vector potentials can be
extended by coupling more states, for example, the mF states
of an F)1 /2 manifold in the linear Zeeman regime. The
calculation follows the two-level example above, except for
the lack of compact closed-form solutions. Additional levels
extend the range of the vector potential from #kr in the
two-level case to #2Fkr for arbitrary F.

For specificity, consider an optically trapped system of
87Rb atoms in the F=1 manifold in a small magnetic field
which splits the three mF levels by g*B#B# %Fig. 1!c"&. The
coupling fields can be produced by a pair of far-detuned
counterpropagating lasers !aligned normal to the bias field B"
detuned from each other by +1−+2=g*B#B# /!−$. Laser po-
larizations, !,++,−" /)2 and -, allow Raman transitions be-
tween the hyperfine levels when the detuning ' from the
excited states is comparable or smaller than the 15 nm
excited-state fine-structure splitting.

As with the two-level case, the 1D Hamiltonian describ-
ing motion parallel to the dressing lasers can be made block
diagonal. The 3.3 blocks H!k̃x" describing the three internal
states of the F=1 manifold are

H!k̃x" = *!k̃x − 2"2 + $ "/2 0

"/2 k̃x
2 + / "/2

0 "/2 !k̃x + 2"2 − $
+ . !7"

In this expression, $ is the detuning of the two-photon dress-
ing transition from resonance; / accounts for any quadratic
Zeeman shift; " is the two-photon transition matrix element;
and k̃x, in units of the recoil momentum kr, is the atomic
momentum displaced by a state-dependent term k̃x=k−2 for
mF=−1, k̃x=k for mF=0, and k̃x=k+2 for mF=+1. When
"08)2 the three eigenvalues, denoted by E# and E0, are
approximately

E# ( , "

" # 8)2
-−1,k̃x −

2)2$

8)2 # "
-2

+
2)2 # "

)2
,

E0 ( k̃2 + 4. !8"

As with the two-level case, the states associated with eigen-
values E# experience an effective vector potential !Fig. 4"
which can be made position dependent with a spatially vary-
ing detuning $ %26&. Again, a magnetic field gradient along ŷ
gives $(y and generates a uniform effective magnetic field
normal to plane spanned by the dressing lasers and real mag-
netic field B.

The resulting magnetic field is inhomogeneous and de-
parts quadratically from its peak value. For experiments re-
quiring constant filling fraction, 1 can be made approxi-
mately uniform by proper selection of the system’s Thomas-
Fermi radius RTF. Still, some experiments do require a
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=32Er , $=0Er"; !c" bare potentials !undressed" with Raman beams
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beams off-resonance !"=32Er , $=10Er".

RAMAN PROCESSES AND EFFECTIVE GAUGE POTENTIALS PHYSICAL REVIEW A 79, 063613 !2009"

063613-5

ωω +δ



  Synthetic Magnetic and Electric Fields 

LETTERS

NATURE PHYSICS DOI: 10.1038/NPHYS1954

V
ec

to
r p

ot
en

tia
l  

q
*
A

*
/h

k

L 

g  BB0 ≈

Detuning  h   /EL

D2
D1

µ
2.32 MHz

Energy E/EL

q*A*/h

Canonical
momentum

k

X 

/kL

m

F

 = ¬1

m

F

 = ¬1

10

5

–4 4

¬5

m

F

 = 0

m

F

 = 0

m

F

 = +1

m

F

 = +1

δ

δ

δ

B0 E*

BEC
ŷ
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Figure 2 | Experimental setup for synthetic electric fields. a, Physical
implementation indicating the two Raman laser beams incident on the BEC
(red arrows) and the physical bias magnetic field B0 (black arrow). The
blue arrow indicates the direction of the synthetic electric field E

⇤. b, The
three mF levels of the F = 1 ground-state manifold are shown as coupled by
the Raman beams. c, Dressed-state eigenenergies as a function of
canonical momentum for the realized coupling strength of ¯h�R = 10.5EL at
a representative detuning ¯h� = �1EL (coloured curves). The grey curves
show the energies of the uncoupled states, and the red curve depicts the
lowest-energy dressed state in which we load the BEC. The black arrow
indicates the dressed BEC’s canonical momentum pcan = q

⇤
A

⇤, where A

⇤ is
the vector potential. d, Vector potentials as measured from the
canonical momentum.

electric field E⇤ = �@A⇤/@t , and the dressed BEC responds as
d(m⇤v)/dt = �r�(r)+q⇤E⇤, where v is the velocity of the dressed
atoms andm⇤v=pcan�q⇤A⇤. Here,1(m⇤v)=�q⇤(Af

⇤ �Ai
⇤) is the

momentum imparted by q⇤E⇤.
We study the physical consequences of sudden temporal changes

of the effective vector potential for the dressed BEC. These changes
are always adiabatic such that the BEC remains in the same
dressed state. We measure the resulting change of the BEC’s
momentum, which is in complete quantitative agreement with our
calculations and constitutes the first observation of synthetic electric
fields for neutral atoms.

Our system (see Fig. 2a) consists of an F =1 87RbBECwith about
1.4⇥105 atoms initially at rest15,16; a small physical magnetic field
B0 Zeeman-shifts each of the spin states mF = 0,±1 by E0,±1. Here,
B0 ⇡ 3.3⇥10�4 T and E�1 ⇡ �E+1 ⇡ gµBB0 � |E0|. The linear and
quadratic Zeeman shifts are h̄!Z = (E�1 �E+1)/2⇡ h⇥2.32 MHz
and �h̄✏ = E0 � (E�1 + E+1)/2 ⇡ �h ⇥ 784 Hz. A pair of laser
beams with wavelength ⌦= 801 nm, intersecting at 90� at the BEC,
couples the mF states with strength �R. These Raman lasers differ
in frequency by 1!L ⇡ !Z and we define the Raman detuning
as � = 1!L � !Z. Here h̄�R ⇡ 10EL and |h̄�| < 60EL, where
EL = h̄2kL2/2m = h⇥ 3.57 kHz and kL =

p
2⇡/⌦ are natural units

of energy and momentum.
When the atoms are rapidly moving or the Raman lasers are

far from resonance (kLv or � � �R), the lasers hardly affect the
atoms. However, for slowly moving and nearly resonant atoms the
three uncoupled states transform into three new dressed states.
The spin and linear-momentum state |kx ,mF = 0i is coupled to
states |kx � 2kL,mF = +1i and |kx + 2kL,mF = �1i, where h̄kx is
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Figure 3 | Change in momentum from the synthetic electric-field kick.
Three distinct sets of data were obtained by applying a synthetic electric
field by changing the vector potential from q

⇤
Ai

⇤ (between +2¯hkL and
�2¯hkL) to q

⇤
Af

⇤. Circles indicate data where the external trap was removed
right before the change in A

⇤, where q

⇤
Af

⇤ = ±2¯hkL (� for red, + for blue
symbols). The black crosses, more visible in the inset, show the amplitude
of canonical momentum oscillations when the trapping potential was left
on after the field kick. The standard deviations are also visible in the inset.
The grey line is a linear fit to the data (circles) yielding slope
�0.996±0.008, where the expected slope is �1.

the momentum of |mF = 0i along x̂ , and 2h̄kLx̂ is the momentum
difference between the two Raman beams. For each kx , the three
dressed states are the energy eigenstates in the presence of Raman
coupling h̄�R (see ref. 2), with energies Ej(kx) shown in Fig. 2c
(grey for uncoupled states, coloured for dressed states); we focus on
atoms in the lowest-energy dressed state. Here the atoms’ energy
(interaction and kinetic) is small compared with the ⇡ 10EL energy
difference between the curves; therefore, the atoms remain within
the lowest-energy dressed-state manifold5, without revealing their
spin and momentum components.

In the low-energy limit, E < EL, dressed atoms have a new
effective Hamiltonian formotion along x̂ ,Hx = (h̄kx �q⇤Ax

⇤)2/2m⇤

(motion along ŷ and ẑ is unaffected); here we choose the gauge
where the momentum of the mF = 0 component h̄kx ⌘ pcan is
the canonical momentum of the dressed state. The red curve
in Fig. 2c shows the eigenvalues of Hx for q⇤Ax

⇤ > 0, indicating
that at equilibrium pcan = pmin = q⇤Ax

⇤ (see ref. 2). Although this
dressed BEC is at rest (v = @Hx/@ h̄kx = 0, zero group velocity), it is
composed of three bare spin states eachwith a differentmomentum,
among which the momentum of |mF = 0i is h̄kx = pcan. None of
its three bare spin components has zero momentum, whereas the
BEC’smomentum—theweighted average of the three—is zero.

We transfer the BEC initially in |mF = �1i into the lowest-
energy dressed state with A⇤ = A⇤x̂ (see ref. 2 for a complete
technical discussion of loading). At equilibrium, we measure
q⇤A⇤ = pcan, equal to the momentum of |mF = 0i, by first
removing the coupling fields and trapping potentials and then
allowing the atoms to freely expand for a t = 20.1 ms time of
flight (TOF). Because the three components of the dressed state
{|kx ,mF = 0i,|kx ⌥2kL,mF = ±1i} differ in momentum by ±h̄2kL,
they quickly separate. Further, a Stern–Gerlach field gradient
along ŷ separates the spin components. Figure 2d shows how the
measured and predicted A⇤ depend on the detuning �. With this
calibration, we use � to control A⇤(t ).

We realize a synthetic electric field E⇤ by changing the effective
vector potential from an initial value Ai

⇤ to a final value Af
⇤. We

prepare our BEC at rest with A = Ai
⇤x̂ , and make two types of

measurement of E⇤. In the first, we remove the trapping potential
and then change A⇤ by sweeping the detuning � in 0.8ms, after
which the Raman coupling is turned off in 0.2ms. Thus, E⇤ can

532 NATURE PHYSICS | VOL 7 | JULY 2011 | www.nature.com/naturephysics

LETTERS

PUBLISHED ONLINE: 20MARCH 2011 | DOI: 10.1038/NPHYS1954

A synthetic electric force acting on neutral atoms
Y-J. Lin1, R. L. Compton1, K. Jiménez-García1,2, W. D. Phillips1, J. V. Porto1 and I. B. Spielman1*

Electromagnetism is a simple example of a gauge theory where
the underlying potentials (the vector and scalar potentials)
are defined only up to a gauge choice. The vector potential
generates magnetic fields through its spatial variation and
electric fields through its time dependence1. Here, we report
experiments inwhichwe have produced a synthetic gauge field.
The gauge field emerges only at low energy in a rubidium Bose–
Einstein condensate: the neutral atoms behave as charged
particles do in the presence of a homogeneous effective vector
potential2.We have generated a synthetic electric field through
the time dependence of an effective vector potential, a physical
consequence that emerges even though the vector potential
is spatially uniform.

Gauge theories play a central role in modern quantum physics.
In some cases, they can be viewed as emerging as the low-energy
description of a more complete theory3,4. Electromagnetism is the
best known gauge theory and its gauge fields are the ordinary scalar
and vector potentials. Magnetic fields arise only from spatial varia-
tions of the vector potential, whereas electric fields arise from both
time variations of the vector potential and gradients of the scalar
potential. These potentials are defined only towithin a gauge choice,
where for a charged particle the canonical momentum (the variable
canonically conjugate to position) and the mechanical momentum
(the mass times the velocity) are not equal. Our experiments2 have
realized a particular version5 of a class of proposals6–11 to generate
effective vector potentials for neutral atoms through interactions
with laser light, and have created synthetic magnetic fields12 impor-
tant for simulating charged condensed-matter systems with neutral
atoms13,14. Here we demonstrate the complementary phenomenon:
a synthetic electric field generated from a time-dependent effective
vector potential. Additionally, wemake independentmeasurements
of both the mechanical momentum and canonical momentum,
where the latter is usually not possible.

The electromagnetic vector potential A for a charged particle
appears in the Hamiltonian H = (pcan � qA)2/2m, where pcan is
the canonical momentum, q is the charge and m is the mass.
(pcan�qA=mv is the mechanical momentum for a particle moving
with velocity v.) We recently demonstrated a technique to engineer
Hamiltonians of this form for ultracold atoms, and prepared a
Bose–Einstein condensate (BEC) at rest with an effective vector
potential A = Axx̂ constant in time and space2, corresponding to
E=B=0, whereE andB are the synthetic electric field and synthetic
magnetic field for neutral atoms, respectively. In ref. 12, we made
A depend on position, giving B = r ⇥ A 6= 0 but E = 0. Here
we add time dependence to a spatially uniform vector potential
A(t )=A(t )x̂ , generating a synthetic electric field E(t )x̂ =�@A/@t .
The resulting force is distinct from that arising from gradients of
scalar potentials �(r), for example, from an external trapping po-
tential. A revealing analogue is that of an infinite solenoid of radius

1Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland, Gaithersburg, Maryland, 20899, USA,
2Departamento de Física, Centro de Investigación y EstudiosAvanzados del InstitutoPolitécnico Nacional, México D.F. 07360, México.
*e-mail: ian.spielman@nist.gov.
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Figure 1 | Schematic diagram of the electric field generated by a
time-varying vector potential. a, Emulated system, showing the electric
current flowing anticlockwise in the infinite solenoid (black coil) with radius
r0 and the real magnetic field B only inside the solenoid. The blue lines
represent the vector potential A. A charged particle (red dot) located far
from the coil experiences a nearly uniform A. b, Calculated time response
of the synthetic vector potential and electric field for neutral atoms in our
first measurement (see Fig. 3). The calculation includes the known
inductive response time of the bias field B0, which sets the detuning, and
the calibration of detuning to vector potential shown in Fig. 2d.

r0 as pictured in Fig. 1a: amagnetic fieldB=Bẑ exists only inside the
coil; however, a non-zero cylindrically symmetric vector potential
A=Br02�̂/2r extends outside the coil. Far from the coil A is nearly
uniform, analogous to our uniform effective vector potential.When
the current is changed in a time interval 1t , B changes with it and
therefore A changes by 1A. A charged particle on the ŷ axis feels
an electric field �(@A/@t )x̂ during 1t , leading to 1p= �q1Ax̂ , a
change in themechanicalmomentumeven outside the solenoid.

We synthesize electromagnetic fields for neutral atoms by
illuminating a 87Rb BEC with two intersecting laser beams (Fig. 2a)
that couple together three atomic spin states within the electronic
ground state (Fig. 2b). The three new energy eigenstates, or
‘dressed states’, are superpositions of the uncoupled spin and
linear-momentum states and have modified energy–momentum
dispersion relations compared with those of uncoupled atoms.
The dressed atoms act as particles with a single well-defined
velocity v, which is the population-weighted average of all three
spin components.

The dispersion relation of the lowest-energy dressed state
changes near its minimum, from p2/2m to (p � pmin)2/2m⇤

(Fig. 2c), where the minimum location pmin plays the role of
qA. In addition, the mass m is modified to an effective mass
m⇤ > m, and both pmin and m⇤ are under experimental control
(not independently). We identify pmin = q⇤A⇤, the product of an
effective charge q⇤ and an effective vector potential A⇤ for the
dressed neutral atoms. As we change A⇤, we induce a synthetic
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Electromagnetism is a simple example of a gauge theory where
the underlying potentials (the vector and scalar potentials)
are defined only up to a gauge choice. The vector potential
generates magnetic fields through its spatial variation and
electric fields through its time dependence1. Here, we report
experiments inwhichwe have produced a synthetic gauge field.
The gauge field emerges only at low energy in a rubidium Bose–
Einstein condensate: the neutral atoms behave as charged
particles do in the presence of a homogeneous effective vector
potential2.We have generated a synthetic electric field through
the time dependence of an effective vector potential, a physical
consequence that emerges even though the vector potential
is spatially uniform.

Gauge theories play a central role in modern quantum physics.
In some cases, they can be viewed as emerging as the low-energy
description of a more complete theory3,4. Electromagnetism is the
best known gauge theory and its gauge fields are the ordinary scalar
and vector potentials. Magnetic fields arise only from spatial varia-
tions of the vector potential, whereas electric fields arise from both
time variations of the vector potential and gradients of the scalar
potential. These potentials are defined only towithin a gauge choice,
where for a charged particle the canonical momentum (the variable
canonically conjugate to position) and the mechanical momentum
(the mass times the velocity) are not equal. Our experiments2 have
realized a particular version5 of a class of proposals6–11 to generate
effective vector potentials for neutral atoms through interactions
with laser light, and have created synthetic magnetic fields12 impor-
tant for simulating charged condensed-matter systems with neutral
atoms13,14. Here we demonstrate the complementary phenomenon:
a synthetic electric field generated from a time-dependent effective
vector potential. Additionally, wemake independentmeasurements
of both the mechanical momentum and canonical momentum,
where the latter is usually not possible.

The electromagnetic vector potential A for a charged particle
appears in the Hamiltonian H = (pcan � qA)2/2m, where pcan is
the canonical momentum, q is the charge and m is the mass.
(pcan�qA=mv is the mechanical momentum for a particle moving
with velocity v.) We recently demonstrated a technique to engineer
Hamiltonians of this form for ultracold atoms, and prepared a
Bose–Einstein condensate (BEC) at rest with an effective vector
potential A = Axx̂ constant in time and space2, corresponding to
E=B=0, whereE andB are the synthetic electric field and synthetic
magnetic field for neutral atoms, respectively. In ref. 12, we made
A depend on position, giving B = r ⇥ A 6= 0 but E = 0. Here
we add time dependence to a spatially uniform vector potential
A(t )=A(t )x̂ , generating a synthetic electric field E(t )x̂ =�@A/@t .
The resulting force is distinct from that arising from gradients of
scalar potentials �(r), for example, from an external trapping po-
tential. A revealing analogue is that of an infinite solenoid of radius
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Figure 1 | Schematic diagram of the electric field generated by a
time-varying vector potential. a, Emulated system, showing the electric
current flowing anticlockwise in the infinite solenoid (black coil) with radius
r0 and the real magnetic field B only inside the solenoid. The blue lines
represent the vector potential A. A charged particle (red dot) located far
from the coil experiences a nearly uniform A. b, Calculated time response
of the synthetic vector potential and electric field for neutral atoms in our
first measurement (see Fig. 3). The calculation includes the known
inductive response time of the bias field B0, which sets the detuning, and
the calibration of detuning to vector potential shown in Fig. 2d.

r0 as pictured in Fig. 1a: amagnetic fieldB=Bẑ exists only inside the
coil; however, a non-zero cylindrically symmetric vector potential
A=Br02�̂/2r extends outside the coil. Far from the coil A is nearly
uniform, analogous to our uniform effective vector potential.When
the current is changed in a time interval 1t , B changes with it and
therefore A changes by 1A. A charged particle on the ŷ axis feels
an electric field �(@A/@t )x̂ during 1t , leading to 1p= �q1Ax̂ , a
change in themechanicalmomentumeven outside the solenoid.

We synthesize electromagnetic fields for neutral atoms by
illuminating a 87Rb BEC with two intersecting laser beams (Fig. 2a)
that couple together three atomic spin states within the electronic
ground state (Fig. 2b). The three new energy eigenstates, or
‘dressed states’, are superpositions of the uncoupled spin and
linear-momentum states and have modified energy–momentum
dispersion relations compared with those of uncoupled atoms.
The dressed atoms act as particles with a single well-defined
velocity v, which is the population-weighted average of all three
spin components.

The dispersion relation of the lowest-energy dressed state
changes near its minimum, from p2/2m to (p � pmin)2/2m⇤

(Fig. 2c), where the minimum location pmin plays the role of
qA. In addition, the mass m is modified to an effective mass
m⇤ > m, and both pmin and m⇤ are under experimental control
(not independently). We identify pmin = q⇤A⇤, the product of an
effective charge q⇤ and an effective vector potential A⇤ for the
dressed neutral atoms. As we change A⇤, we induce a synthetic

NATURE PHYSICS | VOL 7 | JULY 2011 | www.nature.com/naturephysics 531

LETTERS

PUBLISHED ONLINE: 20MARCH 2011 | DOI: 10.1038/NPHYS1954

A synthetic electric force acting on neutral atoms
Y-J. Lin1, R. L. Compton1, K. Jiménez-García1,2, W. D. Phillips1, J. V. Porto1 and I. B. Spielman1*

Electromagnetism is a simple example of a gauge theory where
the underlying potentials (the vector and scalar potentials)
are defined only up to a gauge choice. The vector potential
generates magnetic fields through its spatial variation and
electric fields through its time dependence1. Here, we report
experiments inwhichwe have produced a synthetic gauge field.
The gauge field emerges only at low energy in a rubidium Bose–
Einstein condensate: the neutral atoms behave as charged
particles do in the presence of a homogeneous effective vector
potential2.We have generated a synthetic electric field through
the time dependence of an effective vector potential, a physical
consequence that emerges even though the vector potential
is spatially uniform.

Gauge theories play a central role in modern quantum physics.
In some cases, they can be viewed as emerging as the low-energy
description of a more complete theory3,4. Electromagnetism is the
best known gauge theory and its gauge fields are the ordinary scalar
and vector potentials. Magnetic fields arise only from spatial varia-
tions of the vector potential, whereas electric fields arise from both
time variations of the vector potential and gradients of the scalar
potential. These potentials are defined only towithin a gauge choice,
where for a charged particle the canonical momentum (the variable
canonically conjugate to position) and the mechanical momentum
(the mass times the velocity) are not equal. Our experiments2 have
realized a particular version5 of a class of proposals6–11 to generate
effective vector potentials for neutral atoms through interactions
with laser light, and have created synthetic magnetic fields12 impor-
tant for simulating charged condensed-matter systems with neutral
atoms13,14. Here we demonstrate the complementary phenomenon:
a synthetic electric field generated from a time-dependent effective
vector potential. Additionally, wemake independentmeasurements
of both the mechanical momentum and canonical momentum,
where the latter is usually not possible.

The electromagnetic vector potential A for a charged particle
appears in the Hamiltonian H = (pcan � qA)2/2m, where pcan is
the canonical momentum, q is the charge and m is the mass.
(pcan�qA=mv is the mechanical momentum for a particle moving
with velocity v.) We recently demonstrated a technique to engineer
Hamiltonians of this form for ultracold atoms, and prepared a
Bose–Einstein condensate (BEC) at rest with an effective vector
potential A = Axx̂ constant in time and space2, corresponding to
E=B=0, whereE andB are the synthetic electric field and synthetic
magnetic field for neutral atoms, respectively. In ref. 12, we made
A depend on position, giving B = r ⇥ A 6= 0 but E = 0. Here
we add time dependence to a spatially uniform vector potential
A(t )=A(t )x̂ , generating a synthetic electric field E(t )x̂ =�@A/@t .
The resulting force is distinct from that arising from gradients of
scalar potentials �(r), for example, from an external trapping po-
tential. A revealing analogue is that of an infinite solenoid of radius
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Figure 1 | Schematic diagram of the electric field generated by a
time-varying vector potential. a, Emulated system, showing the electric
current flowing anticlockwise in the infinite solenoid (black coil) with radius
r0 and the real magnetic field B only inside the solenoid. The blue lines
represent the vector potential A. A charged particle (red dot) located far
from the coil experiences a nearly uniform A. b, Calculated time response
of the synthetic vector potential and electric field for neutral atoms in our
first measurement (see Fig. 3). The calculation includes the known
inductive response time of the bias field B0, which sets the detuning, and
the calibration of detuning to vector potential shown in Fig. 2d.

r0 as pictured in Fig. 1a: amagnetic fieldB=Bẑ exists only inside the
coil; however, a non-zero cylindrically symmetric vector potential
A=Br02�̂/2r extends outside the coil. Far from the coil A is nearly
uniform, analogous to our uniform effective vector potential.When
the current is changed in a time interval 1t , B changes with it and
therefore A changes by 1A. A charged particle on the ŷ axis feels
an electric field �(@A/@t )x̂ during 1t , leading to 1p= �q1Ax̂ , a
change in themechanicalmomentumeven outside the solenoid.

We synthesize electromagnetic fields for neutral atoms by
illuminating a 87Rb BEC with two intersecting laser beams (Fig. 2a)
that couple together three atomic spin states within the electronic
ground state (Fig. 2b). The three new energy eigenstates, or
‘dressed states’, are superpositions of the uncoupled spin and
linear-momentum states and have modified energy–momentum
dispersion relations compared with those of uncoupled atoms.
The dressed atoms act as particles with a single well-defined
velocity v, which is the population-weighted average of all three
spin components.

The dispersion relation of the lowest-energy dressed state
changes near its minimum, from p2/2m to (p � pmin)2/2m⇤

(Fig. 2c), where the minimum location pmin plays the role of
qA. In addition, the mass m is modified to an effective mass
m⇤ > m, and both pmin and m⇤ are under experimental control
(not independently). We identify pmin = q⇤A⇤, the product of an
effective charge q⇤ and an effective vector potential A⇤ for the
dressed neutral atoms. As we change A⇤, we induce a synthetic
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homogenous effective field. In the lowest-energy quasiband,
the proper choice of !!=4−!2" /4 "exact# suppresses the
dropoff in the effective magnetic field, leaving terms of order
#4 and higher. "! results from quadratic Zeeman shifts and is
controlled by the bias magnetic field B.# For large enough ",
!!$0, corresponding to the physical sign of ! in the 87Rb
F=1 manifold. For experiments benefiting from constant %, a
similar analysis shows that the filling fraction can be made
constant to O"#4# when !!=3.2−0.204 " and when the
usual Thomas-Fermi density profile goes to zero at #
=1.00"−8.5. "Figure 5 shows an example of this optimiza-
tion as well.#

Gross-Pitaevskii equation

The arguments leading to the GPE in the two-level case
remain valid here, and the coupling terms remain of the same
order. A numerical solution to the GPE in the low-field re-
gime is shown in Fig. 6. This calculation was performed for
the lowest energy of the three dressed states using the exact
dispersion resulting from the numerical diagonalization of
Eq. "7#. The computation uses 87Rb parameters and the ex-
perimentally realistic "=16Er. The inset of Fig. 6 depicts a
case with trapping frequencies &x /2'=10 Hz and &y /2'
=40 Hz. "The asymmetry of these terms is partially counter-
acted by the effective antitrapping term along ŷ resulting
from the zero offset of the dressed-state dispersion.# The
computed vortex lattice explicitly demonstrates that the ap-
proach described above creates an effective field for neutral
atoms in a nonrotating frame, even when given realistic pa-
rameters. The main panel plots the inverse vortex spacing as
a function of gradient directly obtained from the 2D GPE
solution "symbols#. Overlapping these points is a solid line
depicting the expected vortex spacing at the system’s center
"peak effective field# obtained by direct diagonalization of
Eq. "7#. The dashed line is the approximate expression from
Eq. "8#. The formation of the vortex lattice with the correct
spacing clearly indicates that this technique does give rise to
the expected effective magnetic field.

A counterintuitive reminder of this simulation is that spa-
tially stationary solutions to the dressed-state many-body
problem exist even when the lowest quasiband wave func-
tions intrinsically involve large momentum components and
spin mixtures. To understand this situation we can consider a

more pedestrian example: atoms in an optical lattice. In this
case the system’s single-particle eigenstates—Bloch states—
involve only one spin component but are composed of many
momentum components each separated by 2kr. In the lowest
band of a sinusoidal lattice, the q=0 Bloch state has no
center-of-mass motion. Instead its many momentum compo-
nents combine to produce the spatially periodic density
modulation characteristic of Bloch states. In the present case
of spin-momentum dressed states, the differing momentum
components result neither in center-of-mass motion nor in
density modulations as with an optical lattice. Instead, the
momentum is associated with a spatially modulated spin tex-
ture aligned along x̂. In both cases, states away from local
minima, with nonzero group velocity, do have nonzero me-
chanical momentum. The current case differs from the lattice
analogy in one substantial way: here the analysis was per-
formed in a frame rotating at the frequency difference be-
tween the Raman beams of (R /h. In the rotating frame the
spin texture is static. However, in terms of the bare states the
time-dependent phase factors exp"imF(Rt /)# imply that the
local orientation of spin texture is rapidly varying.

IV. CONCLUSIONS

Neutral atoms in the presence of suitable coupling laser
fields experience effective magnetic fields, and the explicitly
calculated coupling terms between dressed states are negli-
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FIG. 6. Inverse vortex spacing versus detuning gradient #!"y# in
a three-level system. The displayed symbols are obtained by solving
the GPE for 3D BEC with "3–5#+105 in the presence of an effec-
tive magnetic field with a detuning #=0 at the system’s center and
a coupling "=16Er. The simulation assumes a 10 ,m Thomas-
Fermi radius along ẑ, and solves a 2D GPE along the remaining two
directions. The typical vortex spacing is obtained from the Fourier
transform of the density distribution $-"r#$2. The uncertainties, re-
flecting the vortex-spacing distribution, are obtained from the half-
width of the first peak in the same Fourier transform. The dashed
line is the approximation %Eq. "8#&, and the solid line results from
numerical diagonalization of Eq. "7#. Inset: calculated in situ den-
sity distribution for a detuning gradient #!"y#=0.023Erkr showing
the expected vortex lattice structure in a nonsymmetric and nonro-
tating system.
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with energy

E0ðp"Þ ¼ % @2‘4
2MQ2 ¼ % 1

2

ð@!RÞ2
!q

& Eo: (11)

The energy of the upper branch at these momenta is
E1ðp"Þ ¼ !q % @2‘4=ð2MQ2Þ, which is higher by !q. It
is worth noting that the value of the ground state energy is
not of the order %@!R, but a higher energy %ð@!RÞ2=!q.
The wave functions at these degenerate ground states are

"ðp"Þ
m ðxÞ ¼ eip"x ~"ðp"Þ

m ,

~" ðpþÞ ¼ i sin#2
cos#2

 !
; ~"ðp%Þ ¼ i cos#2

sin#2

 !
: (12)

Note that the states "ðp"ÞðxÞ are connected by Eq. (6) with
$ ¼ %=2. They are orthogonal due to their different mo-
menta. The spin states, however, have nonzero overlap,
since

hpþjp%i ¼ ~"ðpþÞy ~"ðp%Þ ¼ sin#: (13)

Pseudo spin-1=2 spinor condensate.—Condensing in the
dressed states jpð"Þi, the field operator, which admits the

expansion &̂mðxÞ ¼
P

p"
ðpÞ
m ðxÞâp, turns into a spinor field

of the form

"mðxÞ ¼ Aþ"
ðpþÞ
m ðxÞ þ A%"

ðp%Þ
m ðxÞ: (14)

Because of the nonzero overlap, Eq. (13), the density
nmðxÞ ¼ j"mðxÞj2 of each spin component will develop a
stripe structure. This can be seen by noting that the total
density nðxÞ ¼ n1ðxÞ þ n0ðxÞ and the ‘‘magnetization’’
mðxÞ ¼ n1ðxÞ % n0ðxÞ are given by

nðxÞ¼ jAþj2þ jA%j2þsin#ðA(
þA%e

%2ikoxþc:c:Þ (15)

mðxÞ ¼ % cos#ðjAþj2 % jA%j2Þ: (16)

Note also that mðxÞ is independent of #. Equation (15)
shows that the contrast of the oscillation is set by the
overlap, sin#, whereas the wavelength of the stripe is
%=ko ¼ 2%=ðq cos#Þ. Thus, both contrast and wavelength
increase with # for #< %=2.
The amplitudes A" are determined by minimizing the

Gross-Pitaevskii (GP) functional of Eq. (3), which is
obtained by replacing &̂mðxÞ with the c number "mðxÞ,
and n̂mðxÞ with nmðxÞ ¼ j"mðxÞj2. Defining jAj2 ¼
jAþj2 þ jA%j2, and a" & A"=jAj, the GP functional
then reads,

K ¼ ðEo %'ÞjAj2 þ 1
2jAj4Gðaþ; a%Þ; (17)

where jAj4Gðaþ; a%Þ ¼
R
gmnnmðxÞnnðxÞ. Note that

while Aþ and A% give distinct contributions to the kinetic
energy due to their differing momenta p", they are coupled
through interaction due to the overlap of their spin
functions. For example,

R
n21ðxÞ ¼

R½n2ðxÞ þm2ðxÞ þ
2nðxÞmðxÞ*=4, and the mixing of Aþ and A% appears inR
n2ðxÞ. To minimizeK, we first minimizeGðaþ; a%Þwith

the constraint jaþj2 þ ja%j2 ¼ 1 to obtain the optimal
value (aoþ, a

o
%) and

jAj2 ¼ ð'% EoÞ=Go; Go ¼ Gðaoþ; ao%Þ: (18)

Since the minimization is straightforward, we shall only
present the results, which are shown in Fig. 3. The phase
diagram depends on the parameters

( ¼ g10=g; ) ¼ ðg11 % g00Þ=g;
g ¼ ðg11 þ g00Þ=2:

(19)

and two numbers (c and )c derived from the laser pa-
rameter sin# defined in Eq. (9). They are (c & 2%tan2#

2þtan2#
, and

)c¼ cos#ð2% tan2#Þ. For g11, g00, g10 > 0, (as in 87Rb),
there are three possibilities: (I) Two dressed states, with
both A" ! 0; single dressed state with (II) "pþðxÞ,
(A%¼0), or (III) "p%ðxÞ, (Aþ ¼ 0).

FIG. 2 (color online). The energy levels E0ðpÞ and E1ðpÞ as a
function of k & pþ q=2. The lower branch E0ðpÞ has two
degenerate minima at k ¼ "k0, where k0 ¼ ðq=2Þ cos#. The
energy difference between the lower and upper branch at "k0
is !q ¼ @2q2=2 m.

FIG. 3. The phase diagram of pseudospin-1=2 Bose gas:
Region I is a superposition of two dressed state with momentum
pþ and p%, II and III are the single dressed states pþ and
p% respectively. (, ), (c, and )c are defined in text.
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Absence of Bose condensation in certain frustrated lattices
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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FIG. 2. (Color online) The unit cell of honeycomb lattice with
lattice vectors ai and ei, i = 1, 2, 3. Full (empty) cites belong
to the sublattice A (B). Chern-Simons flux through each of
the triangles is πν corresponding to the Haldane modulation
of phases with staggered φH = Φ/12 = πν/3 (see main text).

tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]

νl =
AC

2l+ 1 + γ/π
, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.

Hamiltonian may be written in terms of bosonic cre-
ation and annihilation operators b†r, br, with the hard-

core condition
(

b†r
)2

= (br)
2 = 0,

{

b†r, br
}

= 1 (where
{., .} denotes anti-commutator), while operators on dif-
ferent sites commute. For, e.g., honeycomb lattice the
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FIG. 3. (Color online) Phase diagram of hard-core bosons on
a honeycomb lattice. CF and BEC are composite fermion and
Bose condensate states respectively. Also shown incompress-
ible states with fractionally quantized filling fractions νl.

Hamiltonian takes the form:

H = t1
∑

r,j

b†rbr+ej
+t2

∑

r,j

b†rbr+aj
+H.c.−µ

∑

r

[

nr −
1

2

]

,

(3)
where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ "=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link 〈r′, r〉 seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as

H = t1
∑

r,j

c†rcr+ej
e
i
∑

r′ φr′,r,r+ej
nr′ (5)

+ t2
∑

r,j

c†rcr+aj
e
i
∑

r′ φr′,r,r+aj
nr′ +H.c.

Notice that the hard-core condition is taken care of
by the Pauli principle and thus fermions may be con-
sidered as non-interacting. A fermion hopping along
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lattice vectors ai and ei, i = 1, 2, 3. Full (empty) cites belong
to the sublattice A (B). Chern-Simons flux through each of
the triangles is πν corresponding to the Haldane modulation
of phases with staggered φH = Φ/12 = πν/3 (see main text).

tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]

νl =
AC

2l+ 1 + γ/π
, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.
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ation and annihilation operators b†r, br, with the hard-
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{
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H = t1
∑

r,j

b†rbr+ej
+t2

∑

r,j

b†rbr+aj
+H.c.−µ

∑

r

[

nr −
1
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]

,

(3)
where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ "=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link 〈r′, r〉 seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as
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sidered as non-interacting. A fermion hopping along

2

e1

e2

e3

3aa1

a2

t 2
t1
πν

πν

πν

πν

FIG. 2. (Color online) The unit cell of honeycomb lattice with
lattice vectors ai and ei, i = 1, 2, 3. Full (empty) cites belong
to the sublattice A (B). Chern-Simons flux through each of
the triangles is πν corresponding to the Haldane modulation
of phases with staggered φH = Φ/12 = πν/3 (see main text).

tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]

νl =
AC

2l+ 1 + γ/π
, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.

Hamiltonian may be written in terms of bosonic cre-
ation and annihilation operators b†r, br, with the hard-

core condition
(

b†r
)2

= (br)
2 = 0,

{

b†r, br
}

= 1 (where
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Hamiltonian takes the form:

H = t1
∑

r,j

b†rbr+ej
+t2

∑

r,j

b†rbr+aj
+H.c.−µ

∑

r

[

nr −
1

2

]

,

(3)
where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ "=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link 〈r′, r〉 seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as

H = t1
∑

r,j

c†rcr+ej
e
i
∑

r′ φr′,r,r+ej
nr′ (5)

+ t2
∑

r,j

c†rcr+aj
e
i
∑

r′ φr′,r,r+aj
nr′ +H.c.

Notice that the hard-core condition is taken care of
by the Pauli principle and thus fermions may be con-
sidered as non-interacting. A fermion hopping along
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
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exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
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lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).
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tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).
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exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
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The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
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ing to form a certain number of non-overlapping localized
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ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-

Kagome:            = (3 x 2)*(2 x 3), thus zero determinant, 
                                    i.e. flat band.  
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state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
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There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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                   Can one Fermionize Bosons on 2D lattice?  

2

e1

e2

e3

3aa1

a2

t 2
t1
πν

πν

πν

πν

FIG. 2. (Color online) The unit cell of honeycomb lattice with
lattice vectors ai and ei, i = 1, 2, 3. Full (empty) cites belong
to the sublattice A (B). Chern-Simons flux through each of
the triangles is πν corresponding to the Haldane modulation
of phases with staggered φH = Φ/12 = πν/3 (see main text).

tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]

νl =
AC

2l+ 1 + γ/π
, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.

Hamiltonian may be written in terms of bosonic cre-
ation and annihilation operators b†r, br, with the hard-

core condition
(

b†r
)2

= (br)
2 = 0,

{

b†r, br
}

= 1 (where
{., .} denotes anti-commutator), while operators on dif-
ferent sites commute. For, e.g., honeycomb lattice the
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FIG. 3. (Color online) Phase diagram of hard-core bosons on
a honeycomb lattice. CF and BEC are composite fermion and
Bose condensate states respectively. Also shown incompress-
ible states with fractionally quantized filling fractions νl.

Hamiltonian takes the form:

H = t1
∑

r,j

b†rbr+ej
+t2

∑

r,j

b†rbr+aj
+H.c.−µ

∑

r

[

nr −
1

2

]

,

(3)
where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ "=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link 〈r′, r〉 seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as

H = t1
∑

r,j

c†rcr+ej
e
i
∑

r′ φr′,r,r+ej
nr′ (5)

+ t2
∑

r,j

c†rcr+aj
e
i
∑

r′ φr′,r,r+aj
nr′ +H.c.

Notice that the hard-core condition is taken care of
by the Pauli principle and thus fermions may be con-
sidered as non-interacting. A fermion hopping along

Chern-Simons transformation: 

boson fermion 

One obtains non-interacting fermions on the lattice in an  
effective magnetic field (constant + staggered a-la Haldane).  2
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FIG. 2. (Color online) The unit cell of honeycomb lattice with
lattice vectors ai and ei, i = 1, 2, 3. Full (empty) cites belong
to the sublattice A (B). Chern-Simons flux through each of
the triangles is πν corresponding to the Haldane modulation
of phases with staggered φH = Φ/12 = πν/3 (see main text).

tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]

νl =
AC

2l+ 1 + γ/π
, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.

Hamiltonian may be written in terms of bosonic cre-
ation and annihilation operators b†r, br, with the hard-

core condition
(

b†r
)2

= (br)
2 = 0,

{

b†r, br
}

= 1 (where
{., .} denotes anti-commutator), while operators on dif-
ferent sites commute. For, e.g., honeycomb lattice the

0
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2

1
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1

Spin Liquid 

CF 
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tt

BEC BEC 0l

1l

2l

FIG. 3. (Color online) Phase diagram of hard-core bosons on
a honeycomb lattice. CF and BEC are composite fermion and
Bose condensate states respectively. Also shown incompress-
ible states with fractionally quantized filling fractions νl.

Hamiltonian takes the form:

H = t1
∑

r,j

b†rbr+ej
+t2

∑

r,j

b†rbr+aj
+H.c.−µ

∑

r

[

nr −
1

2

]

,

(3)
where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ "=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link 〈r′, r〉 seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as

H = t1
∑

r,j

c†rcr+ej
e
i
∑

r′ φr′,r,r+ej
nr′ (5)

+ t2
∑

r,j

c†rcr+aj
e
i
∑

r′ φr′,r,r+aj
nr′ +H.c.

Notice that the hard-core condition is taken care of
by the Pauli principle and thus fermions may be con-
sidered as non-interacting. A fermion hopping along

lattice filling fraction  



                       Effective Fermion Hamiltonian  
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-

Hamiltonian preserves the algebraic structure!: 

Hofstadter problem on graphene 

3

a closed loop L on a lattice acquires a phase factor
∏

<r′r′′>∈L ei
∑

r φr,r′r′′nr =
∏

r
ei

∑
<r′r′′>∈L φr,r′r′′nr . To

analyze the consequences of these factors we adopt the
mean-field approximation proven to be effective in the
context of the fractional quantum Hall effect [36, 38],
nr ≈ 〈nr〉 ≡ ν. The phase factor takes the form
eiϕLν =

∏

r
eiϕrν , where ϕr =

∑

<r′r′′>∈L φr,r′r′′ is the
total angle obtained by scanning the loop L from the
point r. It is clear that ϕr = 0 if r is outside of the
loop and ϕr = 2π if r is inside. If the reference point
r is exactly on the loop/polygon, ϕr is the angle of the
polygon corresponding to vertex r. Therefore for a poly-
gon L with s vertexes enclosing m lattice sites, the phase
factor is ϕL = (s − 2)π + 2πm. This formula has a sim-
ple meaning: for any triangle (big or small) the flux is
ϕ" = π.
The unit cell of the honeycomb lattice consists of four

triangles, Fig. 2, resulting in the average flux Φ = 4πν
per unit cell. It is clear however that this flux is dis-
tributed non uniformly: the half of the unit cell which
contains site of sublattice B carries 3πν, while the other
half πν. There is thus a modulation ±πν between the
two halves of the unit cell. It is convenient to divide
this modulation between the three small triangles, each
carrying additional flux φH = πν/3 = Φ/12. Therefore
the mean-field treatment of the Chern-Simons phase re-
sults in non-interacting fermions subject to a constant
magnetic field Φ = 4πν superimposed with the staggered
Haldane phase[41] φH = Φ/12. Below we analyze conse-
quences of this mapping.
We first notice that the flux attachment described

above preserves the special form of the Hamiltonian (1)
Ĥ = t1T̂ + t2T̂ 2, where T̂ is the operator acting in
the space (cAr , c

B
r ) and Ĝ =

∑

j e
iej ·(k+Ar), where Ar

is the vector potential of the average magnetic field with
Φ = 4πν flux per unit cell. Notice that in the pres-
ence of the vector potential operators Ĝ and Ĝ† do not
commute. Employing Baker-Campbell-Hausdorff[43] for-
mula, one finds ĜĜ† =

∑

j e
iaj ·(k+Ar)+iηjφH+H.c. where

−η1 = η2 = η3 = 1 and φH = Φ/12. This is exactly the
next-nearest neighbor hopping over sublattice A in pres-
ence of the constant magnetic field and Haldane modula-
tion φH . Similarly Ĝ†Ĝ =

∑

j e
iaj ·(k+Ar)−iηjφH +H.c. is

the hopping along sublattice B in the same setup. There-
fore the Haldane modulation, naturally appearing from
the mean-field treatment of the Chern-Simons field, is
necessary to preserve the form (1) of the Hamiltonian (a
constant magnetic field without the modulation does not
admit representation (1)).
This observation greatly simplifies finding the spec-

trum by reducing the problem to diagonalization of the
operator T̂ . We first analyze it in the semiclassical ap-
proximation, applicable if the minimal energy contour C
encloses relatively small fraction of the Brillouin zone.
To this end we notice that the spectrum of the opera-
tor Ĝ = Gk+A in Eq. (1) can be found using Onsager’s

2
t

E

FIG. 4. Hofstadter energy spectrum vs. filling fraction ν ∈

[0, 1/2], for t2 = t1/4, i.e. C is around the Γ point. Notice
that the bottom of the Hofstadter spectrum is flat, which is
a consequence of the fact that all Landau levels, (8), exhibit
minima at the same energy E = −t21/4t2.

relation[44] for Bohr-Sommerfeld quantization of quasi-
classical cyclotron orbits in a magnetic field. Denote by
Gl(Φ), l = 1, 2, . . ., the eigenvalues of Gk+A. Semiclassi-
cally Gl(Φ) can be found by: (i) considering the constant
energy contours |Gk| = G of the bare operator in the re-
ciprocal k space, and (ii) identifying Gl(Φ) with energy
of contours Cl having a normalized reciprocal area A(Cl)
given by:

A(Cl) =
(

l +
1

2
−

γ

2π

)

Φ

2π
, (6)

where Φ is a magnetic flux through a unit cell of the
lattice, and γ is the Berry phase[45, 46]. Finally, the
spectrum of the Hamiltonian (1), which describes the lat-
tice subject to the constant magnetic flux Φ and Haldane
modulation φH = Φ/12, is found in terms of Gl(Φ) as

El(Φ) = −t1Gl(Φ) + t2
[

Gl(Φ)
]2

. (7)

Landau levels (7) are non-monotonic functions of flux,
see inset in Fig. 5. They all (apart from l = 0 if γ = π)
reach the minimum at G = t1/2t2, i.e. exactly at the
band minimum, where the corresponding cyclotron orbit
coincides with the minimal energy contour C. Recalling
that Φ = 4πν, one obtains the set of the filling factors
νl, Eq. (2), where the Landau levels reach the minimum.
Since the Chern-Simons transformation (4) attaches ex-
actly one flux quantum per particle, fermions cr fully
fill the lowest Landau level (LLL) at any lattice filling
ν. Therefore in the mean-filed approximation the many-
body groundstate energy follows LLL.
As two examples we consider the cases where C is

close to the Γ point, i.e. t2 ! t1/6, and C is close
to K and K ′, i.e. t2 & t1/2. In the first case, ex-
panding near k = 0, we find |Gk|2 ≈ 9(1 − k2/2)

                      and      do not commute   
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
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There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
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exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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a closed loop L on a lattice acquires a phase factor
∏

<r′r′′>∈L ei
∑

r φr,r′r′′nr =
∏

r
ei

∑
<r′r′′>∈L φr,r′r′′nr . To

analyze the consequences of these factors we adopt the
mean-field approximation proven to be effective in the
context of the fractional quantum Hall effect [36, 38],
nr ≈ 〈nr〉 ≡ ν. The phase factor takes the form
eiϕLν =

∏

r
eiϕrν , where ϕr =

∑

<r′r′′>∈L φr,r′r′′ is the
total angle obtained by scanning the loop L from the
point r. It is clear that ϕr = 0 if r is outside of the
loop and ϕr = 2π if r is inside. If the reference point
r is exactly on the loop/polygon, ϕr is the angle of the
polygon corresponding to vertex r. Therefore for a poly-
gon L with s vertexes enclosing m lattice sites, the phase
factor is ϕL = (s − 2)π + 2πm. This formula has a sim-
ple meaning: for any triangle (big or small) the flux is
ϕ" = π.
The unit cell of the honeycomb lattice consists of four

triangles, Fig. 2, resulting in the average flux Φ = 4πν
per unit cell. It is clear however that this flux is dis-
tributed non uniformly: the half of the unit cell which
contains site of sublattice B carries 3πν, while the other
half πν. There is thus a modulation ±πν between the
two halves of the unit cell. It is convenient to divide
this modulation between the three small triangles, each
carrying additional flux φH = πν/3 = Φ/12. Therefore
the mean-field treatment of the Chern-Simons phase re-
sults in non-interacting fermions subject to a constant
magnetic field Φ = 4πν superimposed with the staggered
Haldane phase[41] φH = Φ/12. Below we analyze conse-
quences of this mapping.
We first notice that the flux attachment described

above preserves the special form of the Hamiltonian (1)
Ĥ = t1T̂ + t2T̂ 2, where T̂ is the operator acting in
the space (cAr , c

B
r ) and Ĝ =

∑

j e
iej ·(k+Ar), where Ar

is the vector potential of the average magnetic field with
Φ = 4πν flux per unit cell. Notice that in the pres-
ence of the vector potential operators Ĝ and Ĝ† do not
commute. Employing Baker-Campbell-Hausdorff[43] for-
mula, one finds ĜĜ† =

∑

j e
iaj ·(k+Ar)+iηjφH+H.c. where

−η1 = η2 = η3 = 1 and φH = Φ/12. This is exactly the
next-nearest neighbor hopping over sublattice A in pres-
ence of the constant magnetic field and Haldane modula-
tion φH . Similarly Ĝ†Ĝ =

∑

j e
iaj ·(k+Ar)−iηjφH +H.c. is

the hopping along sublattice B in the same setup. There-
fore the Haldane modulation, naturally appearing from
the mean-field treatment of the Chern-Simons field, is
necessary to preserve the form (1) of the Hamiltonian (a
constant magnetic field without the modulation does not
admit representation (1)).
This observation greatly simplifies finding the spec-

trum by reducing the problem to diagonalization of the
operator T̂ . We first analyze it in the semiclassical ap-
proximation, applicable if the minimal energy contour C
encloses relatively small fraction of the Brillouin zone.
To this end we notice that the spectrum of the opera-
tor Ĝ = Gk+A in Eq. (1) can be found using Onsager’s

2
t

E

FIG. 4. Hofstadter energy spectrum vs. filling fraction ν ∈

[0, 1/2], for t2 = t1/4, i.e. C is around the Γ point. Notice
that the bottom of the Hofstadter spectrum is flat, which is
a consequence of the fact that all Landau levels, (8), exhibit
minima at the same energy E = −t21/4t2.

relation[44] for Bohr-Sommerfeld quantization of quasi-
classical cyclotron orbits in a magnetic field. Denote by
Gl(Φ), l = 1, 2, . . ., the eigenvalues of Gk+A. Semiclassi-
cally Gl(Φ) can be found by: (i) considering the constant
energy contours |Gk| = G of the bare operator in the re-
ciprocal k space, and (ii) identifying Gl(Φ) with energy
of contours Cl having a normalized reciprocal area A(Cl)
given by:

A(Cl) =
(

l +
1

2
−

γ

2π

)

Φ

2π
, (6)

where Φ is a magnetic flux through a unit cell of the
lattice, and γ is the Berry phase[45, 46]. Finally, the
spectrum of the Hamiltonian (1), which describes the lat-
tice subject to the constant magnetic flux Φ and Haldane
modulation φH = Φ/12, is found in terms of Gl(Φ) as

El(Φ) = −t1Gl(Φ) + t2
[

Gl(Φ)
]2

. (7)

Landau levels (7) are non-monotonic functions of flux,
see inset in Fig. 5. They all (apart from l = 0 if γ = π)
reach the minimum at G = t1/2t2, i.e. exactly at the
band minimum, where the corresponding cyclotron orbit
coincides with the minimal energy contour C. Recalling
that Φ = 4πν, one obtains the set of the filling factors
νl, Eq. (2), where the Landau levels reach the minimum.
Since the Chern-Simons transformation (4) attaches ex-
actly one flux quantum per particle, fermions cr fully
fill the lowest Landau level (LLL) at any lattice filling
ν. Therefore in the mean-filed approximation the many-
body groundstate energy follows LLL.
As two examples we consider the cases where C is

close to the Γ point, i.e. t2 ! t1/6, and C is close
to K and K ′, i.e. t2 & t1/2. In the first case, ex-
panding near k = 0, we find |Gk|2 ≈ 9(1 − k2/2)

Moat   
bottom 

Boson filling fraction = average magnetic field 
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t

E

4

8.3

0 4/1

FIG. 5. (Color online) Bottom part of Fig. 4. Thick (red) line
represents the ground state energy per particle obtained nu-
merically from the Hofstadter energy spectrum, Eq. (10). Ar-
rows show fractionally quantized filling fractions (2). Dashed
line is the microscopic chemical potential exhibiting jumps at
the fractionally quantized filling fractions. Inset: Semiclassi-
cal Landau levels (8) as functions of the filling fraction ν.

(where 1/k is measured in units of lattice spacing), re-
sulting in the constant energy contours with the normal-
ized area A(Cl) =

(

3
√
3/4π

)

(1 − G2
l /9). Taking into

account quantization Eq. (6) with γ = 0, we obtain

Gl = ±
√

9− 2
√
3Φ(l + 1/2) and

EΓ
l (Φ) = −t1

√

9− 2
√
3Φ(l + 1/2)+t2(9−2

√
3Φ(l+1/2)).

(8)
This semiclassical spectrum is shown in the inset in
Fig. 5. In the second case, expanding around K point
we find Gk ≈ 3|k|/2 and γ = π[41], leading to

EK
l (Φ) = −t1

√√
3Φl + t2

√
3Φl . (9)

To go beyond the semiclassical approximation we con-
sider the Hofstadter problem on the lattice, including
Haldane modulation. For a rational flux Φ = 4πp/q (p
and q are positive integers) diagonalization of the opera-
tor T̂ reduces to Harper equation, which can be analyzed
numerically. For such fluxes the spectrum splits onto
q non-overlapping subbands, labeled by m = 1, 2, . . . q.
The corresponding spectrum Em,k(Φ), Fig. 4, acquires
the form of the Hofstadter butterfly[47]. Notice the flat-
ness of the lower edge of the spectrum, which reflects
the divergent DOS at this energy. Figure 5 amplifies the
lowest part of the Hofstadter spectrum. Landau levels,
closely following Eq. (8), are visible at small filling frac-
tions.
The mean-field Chern-Simons treatment maps the

Hamiltonian (3) onto the system of non-interacting
fermions in the Hofstadter spectrum. Since fermions

have filling factor ν = p/q, the many-body groundstate
is given by occupying p (out of q) lowest subbands. The
ground state energy per particle is given by

EGS(ν) =
q

Np

p
∑

m=1

N/q
∑

k

Em,k(4πp/q) , (10)

where N is number of lattice sites. In Fig. 5 we show
groundstate energy calculated this way vs. filling frac-
tion. For small filling fractions it closely follows the semi-
classical lowest Landau levels (8), exhibiting the minima
at the fractionally quantized filling fractions νl, Eq. (2).
This leads to a macroscopic chemical potential, exhibit-
ing staircase shape with the jumps at the fractionally
quantized filling fractions (2), see Fig. 5. The flat regions
of the staircase imply phase separation into domains with
fillings νl and νl+1.
There is direct mapping between the considered hard-

core boson system Eq. (3) and XY lattice spin model.
Indeed, one may express bosonic creation and annihila-

tion operators b(†)r in terms of on-site spin 1/2 operators

b(†)r → σ∓
r and (2nr − 1) → σz

r , where nr = b+r br is the
on-site density operator. Then the Hamiltonian Eq. (3)
acquires the form

H = t1
∑

r,j

σ+
r σ

−
r+ej

+ t2
∑

r,j

σ+
r σ

−
r+aj

+H.c.− h
∑

r

σz
r .

(11)
The z-magnetic field plays the role of the chemical poten-
tial µ = 2h, which is related to the average magnetization
m = ν − 1/2 through the equation of state µ(ν). In this
way, BEC state with broken U(1) symmetry translates
into magnetically ordered state, while U(1) symmetric
CF state is interpreted as spin-liquid. Comparison of CF
groundstate energy, Eq. (10), with the energy of the mag-
netically ordered state of the classical spin model[48, 49]
shows that at ν = 1/2 (i.e. no magnetic field) the for-
mer wins for 1/5 < t2/t1 < 1/2. This suggests the spin
liquid ground state, Fig. 3, of the corresponding XY spin
model, corroborating with recent simulations[18, 50, 51].
We are grateful to O. Starykh and V. Galitski for useful

discussions. This work was supported by DOE contract
DE-FG02-08ER46482.
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Absence of Bose condensation in certain frustrated lattices
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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FIG. 2. (Color online) The unit cell of honeycomb lattice with
lattice vectors ai and ei, i = 1, 2, 3. Full (empty) cites belong
to the sublattice A (B). Chern-Simons flux through each of
the triangles is πν corresponding to the Haldane modulation
of phases with staggered φH = Φ/12 = πν/3 (see main text).

tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]

νl =
AC

2l+ 1 + γ/π
, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.

Hamiltonian may be written in terms of bosonic cre-
ation and annihilation operators b†r, br, with the hard-

core condition
(

b†r
)2

= (br)
2 = 0,

{

b†r, br
}

= 1 (where
{., .} denotes anti-commutator), while operators on dif-
ferent sites commute. For, e.g., honeycomb lattice the
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FIG. 3. (Color online) Phase diagram of hard-core bosons on
a honeycomb lattice. CF and BEC are composite fermion and
Bose condensate states respectively. Also shown incompress-
ible states with fractionally quantized filling fractions νl.

Hamiltonian takes the form:

H = t1
∑

r,j

b†rbr+ej
+t2

∑

r,j

b†rbr+aj
+H.c.−µ

∑

r

[

nr −
1

2

]

,

(3)
where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ "=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link 〈r′, r〉 seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as

H = t1
∑

r,j

c†rcr+ej
e
i
∑

r′ φr′,r,r+ej
nr′ (5)

+ t2
∑

r,j

c†rcr+aj
e
i
∑

r′ φr′,r,r+aj
nr′ +H.c.

Notice that the hard-core condition is taken care of
by the Pauli principle and thus fermions may be con-
sidered as non-interacting. A fermion hopping along

Area of the Brillouin zone encircled by the Moat 

Berry phase:                       if Moat encircles       point 
 
                                            if Moat encircles  K  and  K’  
                          

2

e1

e2

e3

3aa1

a2

t 2
t1
πν

πν

πν

πν

FIG. 2. (Color online) The unit cell of honeycomb lattice with
lattice vectors ai and ei, i = 1, 2, 3. Full (empty) cites belong
to the sublattice A (B). Chern-Simons flux through each of
the triangles is πν corresponding to the Haldane modulation
of phases with staggered φH = Φ/12 = πν/3 (see main text).
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ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]
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the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.
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ation and annihilation operators b†r, br, with the hard-
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= (br)
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Hamiltonian takes the form:
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∑
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∑

r,j

b†rbr+aj
+H.c.−µ

∑
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1
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,

(3)
where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ "=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link 〈r′, r〉 seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as

H = t1
∑

r,j

c†rcr+ej
e
i
∑

r′ φr′,r,r+ej
nr′ (5)

+ t2
∑

r,j

c†rcr+aj
e
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∑

r′ φr′,r,r+aj
nr′ +H.c.

Notice that the hard-core condition is taken care of
by the Pauli principle and thus fermions may be con-
sidered as non-interacting. A fermion hopping along
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to the sublattice A (B). Chern-Simons flux through each of
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tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]

νl =
AC

2l+ 1 + γ/π
, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.
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where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
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transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ "=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
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state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]
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where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
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ally quantized fillings the system splits into domains with
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metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
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where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ "=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link 〈r′, r〉 seen from the lattice site r′′. In terms of
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Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
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and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
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metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
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schematically depicted in Fig. 3.
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where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
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∑

r′ "=r arg[r−r
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where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
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          Self-consistent Hartree-Fock for Rashba fermions 
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                     Fermionization in 2D?  Chern-Simons!  

fermionic  
wave function 

bosonic   
wave function 

Chern-Simons  
        phase 

ü  (plus/minus) One flux quantum per particle 

ü  Broken parity P  

ü  Higher spin components are uniquely determined 
       by the projection on the lower Rashba brunch 

ü  Fermionic wave function is Slater determinant, 
       minimizing kinetic and interaction energy 
 



                            Chern-Simons magnetic Field 

mean-field approximation 

Particles with the cyclotron mass:   

in a uniform magnetic field:  



                            Integer Quantum Hall State 

Landau levels:   

One flux quanta per particle, thus ν=1 filling factor: IQHE 

Particles with the cyclotron mass:   

in a uniform magnetic field:  

ü Gapped bulk and chiral edge mode:  
                                             interacting topological insulator 



                                          Phase Diagram  

spin anisotropic  
     interaction  

chemical potential  

Spin-Density Wave 

Bose Condensate 

Composite Fermions 

broken R 

broken R and T 

broken R, T and P 



                                     Phase Separation 

total energy per volume 

composite fermions 

Bose condensate 

phase separation  



                        Rashba Bosons in a Harmonic Trap  

condensate 

composite fermions 

ü  high density Bose condensate in the middle and 
       low  density composite fermions in the periphery  



ü  At low density Rashba bosons exhibit   
       Composite Fermion groundstate 

ü  CF state breaks R, T and P symmetries 

ü  CF state is gaped in the bulk, but supports 
       gapless edge mode, realizing interacting  
       topological insulator 

ü  CF equation of state:  

ü There is an interval of densities where CF  
       coexists with the Bose condensate  

ü In a trap the low-density CF fraction is pushed  
      to the edges of the trap      

                                         Conclusions  
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