Extra-solar planets and their parent stars

Garik Israelian

Institute of Astrophysics of Canary Islands, Spain

European Northern Observatory

La Palma Observatory (ORM) 2590 meter a.s.l.

Teide Observatory Teide Observatory 2590 meter a.s.l. 2590 meter a.s.l.

GTC: 10.4 meter

The largest telescope in the world

Galileo: 3.5 meter Italian National Telescope

La Palma

MAGIC cosmic ray telescope The most precise telescope in the world

MERCATOR Swiss-Belgian 1.2 meter robotic telescope

WHT: 4.2 meter The most reliable and productive telescope in the world

ORM Observatory 2600 meter a.b.s

Teide Observatory 2590 meter a.s.l.

Some planets were known to the ancients who watched them move against the night sky.

Courtesy NASA's Navigator Program

Mercury, Venus, Mars, Jupiter, and Saturn were the "Wandering Stars."

"Planet" comes from the Greek word for "wanderer."

Courtesy NASA's Navigator Program

And other planets were "discovered."

Uranus The year 1781

The first planet "discovered." William and Caroline Herschel

Neptune The year 1846

First observed by Galle and d'Arrest (based on calculations by Adams and Le Verrier).

Pluto

The year 1930 Discovered by Clyde Tombaugh

But what about more distant worlds? Thousands of years ago, Greek philosophers speculated.

"There are infinite worlds both like and unlike this world of ours...We must believe that in all worlds there are living creatures and planets and other things we see in this world." Epicurius c. <u>300 B.C</u>

And so did medieval scholars.

The year 1584

"There are countless suns and countless earths all rotating around their suns in exactly the same way as the seven planets of our system . . . The countless worlds in the universe are no worse and no less inhabited than our Earth"

Giordano Bruno in De L'infinito Universo E Mondi

In 1995, a breakthrough: the first planet around another star.

A Swiss team discovers a planet - 51 Pegasi - 48 light years from Earth.

Methods to Detect Planets

Spitzer, for the first time, captured the light from two known planets orbiting stars other than our Sun. But so far, most of the extra-solar planets are being detected using INDIRECT methods.

Artist Concept: NASA's Spitzer Infrared Telescope

Methods to Detect Planets

There are several complementary methods for detecting planets orbiting distant stars.

Doppler – detecting the star wobbling in the line of sight due to the planet's gravitational pull

Astrometry – detecting tiny wobble of stars against other stars in the background.

Planet Transit – detecting a tiny drop in brightness of the star as a planet passes in front

Coronograph – blotting out the light of the star so planets can be "seen"

Astrometry

Massive Planets Cause Stars to Wobble

Stars and their planets also move about the common center of mass.

Since the mass of a star is so much greater than the mass of a planet, the "center of mass" (i.e. "balance point") is located close to (but not at the center) of the parent star.

This means that stars with planets in orbit around them are not stationary. Rather, they move slightly about this balance point producing a <u>gravitational wobble</u>!

The gravitational wobble of the Sun is dominated by the gravity of the most massive planet Jupiter.

NASA's SIM PlanetQuest Mission

Are there terrestrial planets orbiting nearby stars?

Artist Conception: NASA's SIM PlanetQuest Astrometry

NASA's SIM PlanetQuest Mission will survey nearby stars for Earth-size planets by measuring the wobble of stars against other stars in the background.

This method of detection is called astrometry.

Doppler shift to measure the tug of planets on stars. Here is how it works:

So far, nearly all extrasolar planets have been discovered with this technique

If an unseen planet tugs the star back and forth... ...the light from the star shifts slightly to the red as the star moves away from you. ...and slightly to the blue as it moves toward you. Astronomers can detect these shifts by very carefully observing the spectra (or colors) of the stars.

Detecting Planets: Transit Method

NASA's Kepler mission will use the transit method.

When a planet passes by (or transits) a star, we can detect a slight decrease in the amount of light from the star.

Space Missions: COROT_Kepler

• COROT (2007)

- 60,000 stars
- field: 3 deg²
- precision: ~10⁻⁴ mag
- Kepler (2010)
 - 100,000 stars
 - $field: 10 deg^2$
 - precision: $\sim 5 \times 10^{-5}$ mag

Hundreds of new transits of giant planets?

> A few terrestrial planets?

Coronograph: We will block out the bright light from the star.

Keck Interferometer

The Keck Interferometer combines the light of two 10-meter telescopes to take images of hot Jupiter-size planets that shine bright in infrared light.

How precise ?		
Jupiter	@ 1 AU	: 28.4 m s⁻¹
Jupiter	@ 5 AU	: 12.7 m s⁻¹
Neptune	@ 0.1 AU	: 4.8 m s ⁻¹
Neptune	@ 1 AU	: 1.5 m s ⁻¹
Super-Earth (5 M_{\oplus})	@ 0.1 AU	: 1.4 m s ⁻¹
Super-Earth (5 M_{\oplus})	@ 1 AU	: 0.45 m s⁻¹
Earth	@ 1 AU	: 9 cm s⁻¹

Stellar challenges

First planets and first "problems"

Mayor & Queloz (1995)

Strange world: msin(i)=0.47M_{Jup} P=4.2 days Separation=0.05 AU

The HARPS Project

 Better than 1m/s long term precision

The HARPS Spectrograph

ESO PR Photo 08b/03 (27 March 2003)

@European Southern Observatory

HD82943: a two planet system

(Mayor et al. 2000, $A_{\&}A_{)}$, Israelian et al., (2001, Nature)

Huge

eccentricity

HD80606 (Naef et al. 2001)

ecc.=0.93 P=112 days msini=4M₍Jup₎

GI581c (Udry et al. 2007) 5 Earth_masses in the habitable zone!

Observed Velocity Variation of Gliese 581

image is copyright © ESO. It is released in connection with an ESO press release and may be used by the press on the condition that the source is clearly indicated in the caption.

HD69830: a HARPS system of 3 Neptunes (Lovis et al. 2006)

Stellar activity

Texbook case: HD166435 (Queloz et al. 2000)

Stellar challenges

Granulation (τ ~ 6 min)
Mesogranulation (τ ~ 3h)
Supergranulation (τ ~ 1 day)
Active regions (τ ~ 10 days)

Current situation on exoplanet searches

- 865 exoplanets found, mostly by Radial_velocity surveys
- At least 60% of sun_like stars have planets
 - 134 multi_planet systems
 - 230 planets transit their host_stars
 - 87 Neptuns and Super_Earth.
 - 13 planets detected by direct imaging.
 - 8 planets with molecules detected
 - 13 Free floating planets

Newworlds, new problems

- Varied and strange properties!
- Very different from Solar System:
- Not supposed to exist!!!

Need to revise theories of planet formation and evolution Look at the statistical properties

Mass distribution (HARPS)

Benz et al. (2009)

Period Distributi on: 3_day peek and period valey Cumming et al. 1999; Udry et al. 2003)

Mayor et al. 2012

Fig. 14. Observed period distributions for low-mass planets $(m_2 \sin i < 30 M_{\oplus})$ before (black histogram) and after (red histogram) correction for the detection bias. Most of the low-mass planets are confined on short period orbits. The mode of the distribution appears just over 40 days.

Mass_ Period relation No planets with short P and high Mass!

Eccentricity Distribution!

Only small difference between binary stars and planets!

Eccentricity Distribution!

Mayor et al 2012

The point is...

- Mass distribution
 - Stars and planets formed by different process
 - Upper mass_limit for planet?
- Need for migration mechanisms
 - Migration is mass_dependent
 - How to stop migration?

Eccentricity pumping mechanisms needed

Planet frequency and stellar [Fe/H] Santos, Israelian & Mayor (2001-2005)

30 ∦ comparison ∦ planets ∦ small planets Is the same true for Neptunes? number of stars 20 Sousa et al 2011 10 0 -1.0 -0.50.0 0.5 1.0 [Fe/H]

Is the same true for Neptunes?

Mayor et al 2012

Is the same true for Earths?

Chemical Composition

Planet formation and stellar evolution does not modify stellar surface abundance

Primordial

Secondary

pollution

Grav. settling, etc

Smith et al. (2000) Not confirmed by Sadakane et al. (2002), Takeda et al. (2001)

ure

C/O versus Mg/Si

Mg/Si abundance ratios are larger in planet-host stars than in stars without known planets, although part of this signature is probably due to chemical evolution effects since planet-host stars are on average more metal-rich than single stars.

Delgado-Mena et al. (2010, ApJ, 725, 2349)

Light elements Li and Be

Angular momentum exchange:

Momentum locked in planets Transfered to the star by accreted objects Tidal effects

MS accretion of planetesimals, ingulfment of planets ⁶Li -test

Flare activity (spallation reactions: Li & Be))

Light element tests

M67 open cluster

It is possible, in principle anyway, that the low Li abundances of the Sun and 16 Cyg B with respect to 16 Cyg A may be related to the presence of planetary companion. Li abundances of 47 UMa, and HD114762 might further support such a connection between planets/disks, angular momentum evolution, and photospheric Li abundance.

Gonzalez & Laws (2000)	yes
Ryan (2000)	no
Israelian et al. (2004)	yes
Takeda & Kawanomoto (2005)	yes
Chen & Zhao (2006)	yes
Luck & Heiter (2006)	no
Takeda et al. (2007)	yes
Gonzalez (2008)	yes

Israelian et al. (2009)	yes
Gonzalez (2010)	yes
Takeda et al. (2010)	yes
Baumann et al (2010)	no
Ghezzi et al. (2010)	no
Sousa et al. (2010)	yes
Delgado Mena et al. (2011)	yes

Li versus T_{eff}

Li abundances for 23 planet-host stars and 60 stars without planets from HARPS GTO program and CORALIE program

Israelian et al. (2009, Nature, 462, 189)

T_{eff} =6000 K [Fe/H]=0

The Li6-test (Israelian et al. Nature, 411, 163, 2001)
Planetary migration Planetary migration: dynamical friction d > 5 AUTime-scale ~ 10-20 Myr Time-scale: up to 1 Gyr planetesimals Dense gas/dust accretion disk drag effect, torque etc NO gas $0.0001 M_{sun} < M_{disk} < 0.1 M_{sun}$

Multi-body interactions: no gas/dust, no planetesimals

Time-scale: up to 100 Myr

Few large planets, orbital radii evolve at different rates.

Multi-body interactions & planetesimals disk

Time-scale: up to 1 Gyr or more

No accretion disk, dust & gas only planetesimals

Fectonic & Volcanic activity

Is there enough Th, U and K?

HD115585 Sun like star with a planetary system

No planets and no life without SUPERNOVAE

Biomarkers !

Earthshine spectrum

Biomarkers ! Spectroscopy of extrasolar planets

CO₂ Carbon Dioxide

HD189733 b

 Water Signatures in Exoplanet HD189733b
 Spitzer Space Telescope • IRAC

 NASA / JPLCaltech / G. Tinetti (Institute d'Astrophysique de Paris)
 ssc2007-12a

And soon O_2 and/or O_3 ?

Kepler-47 System

Planets and orbits to scale

Future instruments like ESPRESSO and HIRES (ESO VLT/ELT)

ESPRESSO@VLT (2014)

Proposed to ESO (pre_CODEX instrument)

• Goal RV precision: 10cm/sprecision

 Goals: detection of Earth_like planets, asteroseismology, fundamental physics, cosmology

• HIRES@E_ELT (2018)

Icm/s precision over 20 years

Thank You!