Включение H3.3 в центромерный хроматин: Кто, Как и Зачем?

Александр Ишов Онкоцентр Университета Флориды

ИНСТИТУТ ЦИТОЛОГИИ 29 апреля 2015

Nuclear domains (compartments)

- -contain defined subset of proteins
- -can be identified by light and electron microscopy, and in vivo by GFP fusions
- some of nuclear compartments can be biochemically isolated

From: Spector DL. J Cell Sci. 2001 114(Pt 16):2891-3

PML Nuclear Bodies/Nuclear Domain 10 (ND10)

Nuclear matrix associated domains with the average frequency of 10 per nucleus and a diameter of 0.1-1.0 $\mu\kappa m$ in most cells

Assay: microscopy after immunostaining for PML and Sp100

Sp100 and PML co-localize at PML bodies

Functional roles for nuclear domains

Increased accumulation of protein in nuclear domains may indicate:

One of the of PML bodies/ND10 functions:

nuclear depot by controlled recruitment and release of selected proteins

External insults modify PML NBs/ND10

- Hyperthermia (fever) = Heat Shock (HS)
- Interferon exposure (PML, SP100, Daxx: IFN regulated)
- Heavy metal exposure (Cd++; As+++)
- UV light
- Hormone action (progesteron)
- Viral Infection (Ad5; HSV-1; HCMV; EBV; KSHV; HDV)
- Aging

Functional roles for nuclear domains

Increased accumulation of protein in nuclear domains may indicate:

- PML bodies/ND10 function as a nuclear depot
- PML bodies/ND10 are modified by stress
- What is localization of ND10 proteins upon stress (HS)?

List of Proteins Found in PML bodies/ ND10

Constitutive Proteins

- PML; promyelocytic leukemia
- Sp100; PBC autoantigen
- **SUMO** (Small Ubiquitin-like Modifier)
- ATRX; a-thalassemia X-linked mental retardation, SWI/SNF2 chromatin remodeling

Facultative Proteins

- BLM; helicase mutated in Bloom syndrome
- p53; after interferon exposure
- CBP; histone acetylase
- HDAC2; histone deacetylase
- HP1; heterochromatin
- Pax 5; transcription factor
- pp71; HCMV tegument protein
- ICPO; HSV-1 transactivator
- E4 orf3; Ad5 IE protein
- SENP-1; desumofication enzyme

- Daxx
 - •Daxx: conservative protein essential for embryonic development
 - •Daxx is implicated in apoptosis, transcriptional regulation and mitosis

Daxx Localization Upon HS and Recovery

To study the effect of hyperthermic stress on Daxx localization, HEp2 (human larynx carcinoma) cells were exposed to 42C for 1h and either fixed immediately or recovered at 37C for 1h/2h

Staining: Daxx/PML

 During HS, Daxx forms additional patterns (20-40 per cell, often in pairs) that do not co-localize with PML NB's

• New patterns mostly disappear at 2h of recovery

What are those new patterns?

Daxx and Centromeres

Staining: Daxx/CREST (human autoimmune anti-centromere antibody)

- before HS, Daxx colocalizes with centromeres in some cells
- after HS and 1h of recovery, **Daxx** colocalizes with **centromeres** in most cells
- 2h of recovery: no **Daxx** association with **centromeres**

Daxx association with CEN and periCEN

HEp2 cells expressing FLAG/HA-Daxx were exposed to 42C for 1h and either fixed immediately or recovered at 37C for 1 - 3h.

Daxx accumulates at CEN and periCEN during stress and recovery

What attracts Daxx to CEN/periCEN?

Daxx contains two <u>SUMO-interaction domains</u> (SIM) (Santiago A. et al., 2009).

Is SUMOylation important for Daxx localization at CEN/periCEN after stress?

SUMO Intro

-<u>S</u>mall <u>u</u>biquitin-related <u>mo</u>difier (SUMO) is ~ 100 amino acid polypeptide that can be covalently conjugated to a lysine of substrate protein

-SUMO can add binding interfaces or remove them

-SUMOylation involves in intra-nuclear protein targeting, formation of subnuclear structure, regulation of transcription, DNA replication/repair, chromosome segregation, and protein stability

-Four SUMO family proteins in mammals: SUMO-1/4; SUMO-2, -3 are 96% identical, only about 46% identity with SUMO-1/4

-SUMO-1 and SUMO2/3 are differentially regulated in vivo: SUMO-1 is conjugated to substrates under normal condition, SUMO-2/3 is mostly conjugated to target proteins in response to stress

Depletion of SUMO-1 and SUMO-2/3 by siRNA

Sumoylation by SUMO-2/3 is elevated in response to HS

Is SUMOylation important for Daxx localization at CEN/periCEN after stress?

HEp2 cells were transfected with control (CTL), SUMO-1 or SUMO-2/3 siRNA. 72h later cells were exposed to heat shock (1h, 42C).

Staining: Daxx and CREST (centromeres)

Daxx deposition at centromeres upon HS requires SUMO-2/3, but not SUMO-1

Complimentary approach: SIM inactivation of Daxx

Daxx contains two SUMO-interacting motifs (SIMs)

Daxx Δ SIM, in which both SIMs are mutated, does not interact with SUMO

Daxx WT and Daxx \triangle SIM were cloned in pOZ (left);

HEp2 cells created for stable expression of corresponding constructs (right)

How SIM mutations affect Daxx localization upon stress? HEp2 cells expressing FLAG/HA-Daxx and FLAG/HA-DaxxD-SIM ChIP for Daxx and DaxxD-SIM on CEN (pan-centromeric alpha-satellite)

Daxx association with CEN is SIM-dependent

How SIM mutations affect Daxx localization upon stress?

HEp2 cells stable expressing of Daxx WT and Daxx Delta-SIM in frame with FLAG/HA were fixed at 37C or after exposure to 42C for 1h

Staining: FLAG (Daxx)/PML (top) and FLAG (Daxx)/CREST (bottom)

Daxx WT

SIM mutations block Daxx localization at CEN/periCEN upon HS

Sumoylation (2/3) of protein(s) X at CEN/periCEN upon HS

Daxx recruitment via SIM's

Accumulation of Daxx to centromeres under different stress condition

Heat shock, 42C, 1h	UV 10 mJ/cm ²	Gamma irradiation	Proteosome inhibition MG132	TSA	Cd²+	As ₂ O ₃	H₂O₂	17-AAG
YES	NO	NO	YES	YES	YES	NO	NO	YES

Daxx at CEN/periCEN:

- *Daxx accumulates at CEN/periCEN upon application of mild HS (42C). This accumulation is: rapid (30' of HS), reversible (1 h after HS release), does not change Daxx stability.
- *Daxx deposition is mediated by SUMO-2/3, but not by SUMO-1 and requires functional Daxx SIM's, suggesting for potential interaction with SUMOylated partner(s).
- *Among PML NB's associated proteins, only SNF2 helicase/ATPase ATRX is associated with Daxx upon stress.

FUNCTION?

Potential functions of Daxx at CEN/periCEN:

- Set up the cell cycle checkpoint for the stress recovery?
- Changes in the follow-up kinetochore assembly?
- Genome stability?
- Changes in chromatin structure and epigenetic modifications?
- Regulation of transcription at CEN/periCEN repeats?

Potential functions of Daxx at CEN/periCEN:

- Set up the cell cycle checkpoint for the stress recovery?
- Changes in the follow-up kinetochore assembly?
- Genome stability?
- Changes in chromatin structure and epigenetic modifications?
- Regulation of transcription at CEN/periCEN repeats?

CEN and periCEN transcription in mouse and human cells

Transcripts: non-coding RNA

Transcription from CEN/ periCEN is implicated in:

-stress

-development

-proliferation

-carcinogenesis

Expression of CEN and periCEN is elevated in lung cancer specimens

Eymery et al., Nucleic Acids Res. 2009

Transcription of centromeric (CEN) and pericentromeric (periCEN) repeats during stress and release

HEp2 cells expressing Daxx shRNA and CTL shRNA were exposed to 42C for 1h and either fixed immediately or recovered at 37C for 1 -12h

CEN transcription

Depletion of Daxx REPRESSES transcription: CEN (at 37C) periCEN (HS)

Surprise: mostly Daxx is transcription repressor via attraction of HDAC1/2 (c-met)

What is the mechanism of Daxx-dependent repression of CEN and periCEN?

Daxx and Histone 3.3

Daxx/ATRX complex as a new chaperone of histone H3.3

Histone H3.3 summary

-Histone H3 variant, is associated with actively transcribed genes

-Non-S-phase (replication-independent) loading

-Previously reported chaperone: HIRA

-Daxx/ATRX complex is a new chaperone of histone H3.3

H3										
Variant	me3	me3	ac		me	<u>a</u> 3	me3	3		
H3.1	ARTKQT	ARKS	TGGKAPF	KQL	ATKAAR	SAP	ATGGVK	PHR	YRPG]	Tail
H3.2	ARTKQT	ARKS	TGGKAPF	KQL	ATKAAR	SAP	ATGGVK	PHR	YRPG	Dogion
H3.3	ARTKQT	ARKS	TGGKAPF	KQL	ATKAAR	SAP	STGGVK	PHR	YRPG	Region
		10		20		30	me3	40		
H3.1	TVALRE	IRRY	QKSTEL	LIRK	LPFQRL	VREI	AQDFKT	DLRE	TQS SAVA	4)
H3.2	TVALRE	IRRY	QKSTEL	LIRK	LPFQRL	VREI	AQDFKT	DLRE	TQS <mark>S</mark> AVN	4
H3.3	TVALRE	IRRY	QKSTEL	LIRK	LPFQRL	VREI	AQDFKT	DLRE	TQS <mark>AAIC</mark>	
	50		60		70		80		9	GIODULAR
H3.1	ALQEAC	EAYL	VGLFED	INLC	AIHAKRY	TIM	PKDIQLA	ARRI	RGERA	Region
H3.2	ALQEAS	EAYL	VGLFED	INLC	AIHAKR	/TIM	PKDIQLA	ARRI	RGERA	
Н3.3	ALQEAS	EAYL	VGLFED	INLC	AIHAKRY	/TIM	PKDIQLA	RRI	RGERA]
		100		110		120		130		

Sequence alignment of human H3 variants. Changes in amino acid composition are highlighted in blue

Campos and Reinberg, *Genes Dev.* 2010

Model of H3.3 deposition by histone chaperones HIRA and DAXX

Production and characterization of H3.3/H3.1 cell lines

A: Histones H3.3 and H3.1 were cloned in frame with FLAG/HA in pOZ vector (Nakatani Y, Ogryzko V. Methods Enzymol. 2003;370:430-44.)

B: HEp2 cells expressing H3.3 and H3.1 on the background of <u>control shRNA or Daxx</u> <u>shRNA</u>.

Western blot analysis for: Daxx (top), H3.3/H3.1 (middle); loading control: actin (bottom).

Histone H3.3 association with CEN and periCEN

HEp2 cells expressing FLAG/HA-H3.3 and FLAG/HA-H3.1 on the sh-Daxx (Daxx shRNA) and sh-control (CTL shRNA) background

ChIP for H3.3 on CEN (pan-centromeric alpha-satellite) and periCEN (satellite 3-9)

pOZ: negative control for ChIP

H3.3 at CEN

H3.3 at periCEN

*H3.3 loading at CEN and periCEN is Daxx-dependent *No obvious Daxx-dependent changes after HS...

Function of Daxx at CEN/periCEN

- 1. Loading of H3.3 on repeats (both CEN/periCEN) in control conditions
- 2. As a result of this loading, increased transcription: at CEN in control, at periCEN in stress-induced condition

But: Daxx is mostly associated with CEN/periCEN UPON/AFTER stress, when levels of H3.3 does not change....

What is the function of Daxx hyper-accumulation at CEN/periCEN upon stress?

Potential functions of Daxx at CEN/periCEN:

- Set up the cell cycle checkpoint for the stress recovery?
- Changes in the follow-up kinetochore assembly?
- Genome stability?
- Changes in chromatin structure and epigenetic modifications?
- Regulation of transcription at CEN/periCEN repeats?

Model of 3-Dorganization of centromeric (CEN) and pericentromeric (periCEN) chromatin

<u>CEN:</u> interspersed CENP-A and H3 Lys4Me2 nucleosome may mediate formation of the 'cylindrical' three-dimensional centromere structures observed in metaphase chromosomes

periCEN: H3 Lys9Me2/3 chromatin, which recruits heterochromatin proteins (HP1) and cohesion proteins (RAD21/ SCC1) Epigenetic Modifications of chromatin: <u>CEN</u>

HEp2 cells expressing sh-Daxx (Daxx shRNA) and sh-control (CTL shRNA)

ChIP for H3K9tri-Me (repressive) and H3K4di-Me (active) on CEN

Daxx depletion: Reduction before stress

Daxx depletion: Reduction before stress

Epigenetic Modifications of chromatin: <u>periCEN</u> HEp2 cells expressing sh-Daxx (**Daxx shRNA**) and sh-control (**CTL shRNA**) ChIP for H3K9tri-Me (repressive) and H3K4di-Me (active) on periCEN

Daxx depletion: Reduction before stress

Daxx depletion: Elevation after stress

Model of 3-Dorganization of centromeric (CEN) and pericentromeric (periCEN) chromatin

From: Sullivan and Karpen, Nat Struct Mol Biol 2004

<u>CEN:</u> interspersed CENP-A and H3 Lys4Me2 nucleosome mediate formation of the 'cylindrical' three-dimensional centromere structures observed in metaphase chromosomes

<u>periCEN:</u> H3 Lys9Me2/3 chromatin, which recruits heterochromatin proteins (HP1) and cohesion proteins (RAD21/ SCC1)

No Daxx = increase of "active" chromatin modifications at periCEN after stress

Summary: Daxx in chromatin epigenetic signature maintenance at CEN/periCEN

- Loading of H3.3 on repeats (both CEN/periCEN) in control conditions
- 2. As a result of this loading, increased transcription: at CEN in control, at periCEN in stressinduced condition
- 3. After stress, "epigenetic signature" protection via Daxx complex assembly at CEN/ periCEN. No Daxx = increase of "active" chromatin modifications at periCEN, changes in chromatin borders!

Model: Daxx as a guardian of epigenome (and, probably, genome?) stability

Cancer Cell **Review**

Histone H3.3 Mutations: A Variant Path to Cancer

Benjamin T.K. Yuen^{1,2,3} and Paul S. Knoepfler^{1,2,3,4,*}

¹Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, 4303 Tupper Hall, Davis, CA 95616, USA ²Genome Center, University of California Davis School of Medicine, 451 Health Sciences Drive, Davis, CA 95616, USA ³Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, 2425 Stockton Boulevard, Sacramento, CA 95817, USA

⁴Comprehensive Cancer Center, University of California Davis, 2279 45th Street, Sacramento, CA 95817, USA

A host of cancer types exhibit aberrant histone modifications. Recently, distinct and recurrent mutations in a specific histone variant, histone H3.3, have been implicated in a high proportion of malignant pediatric brain cancers. The presence of mutant H3.3 histone disrupts epigenetic posttranslational modifications near genes involved in cancer processes and in brain function. Here, we review possible mechanisms by which mutant H3.3 histones may act to promote tumorigenesis. Furthermore, we discuss how perturbations in normal H3.3 chromatin-related and epigenetic functions may more broadly contribute to the formation of human cancers.

H3.3 mutations and Cancer

		K27	K36		G34
H3.3	H3F3A	A <mark>A</mark> G	A <mark>A</mark> G		GGG
	H3F3B	AAA	A <mark>A</mark> G		GGG
H3.1		AAG (6/10) AAA (4/10)	AAG (8/10) AAA (2/10)		GGC (8/10) GCT (2/10)
Mutation	Met	ATG	ATG	Val	GTG
				vai	GTT
					CGG
				Arg	CGA CGT
					CGC
				Trp	TGG
					TTG
					CTT
				Leu	СТС
					СТА
					CTG

Codon usage in histone H3.3 and H3.1 genes at the sites of histone mutation

Age of presentation for histone H3 mutant tumors

Kallappagoudar et al., Chromosoma 2015

Distribution and Characteristics of H3.3-Mutated Gliomas

•G34R/V mutations (gray, top) localize to cerebral/cortical hemispheres, specifically in frontal, parietal, occipital, and temporal lobes.

•K27M mutations (pink, bottom) localize primarily to midline locations, including the spinal cord, thalamus, pons, and brainstem.

•G34R/V and K27M mutations overlap with mutations in TP53 and ATRX/DAXX.

Mutations in H3.3 directly (K27M) or indirectly (G34R/V) alter posttranslationally modified residues. G34R/V mutations appear to affect K36me3 levels, possibly through inhibition of the methyltransferase SETD2, while K27M mutations attenuate EZH2 methyltransferase function, decreasing global K27me3 levels.

H3.3 mutants: The Polycomb Connection

(A) "Wild type": H3.3K27M is not incorporated into the chromatin and thus does not inhibit PRC2 function. PRC2 trimethylates H3K27, spreading H3K27me3 marks throughout the promoter region and gene body, effectively repressing transcription.

Mutant H3.3K27M can interact with PRC2 to alter transcription in a number of possible scenarios:

(B) "Sequestered": H3.3K27M mimics K27 methylation and allosterically inhibits EZH2 methyltransferase function outside of chromatin, sequestering it in the nucleoplasm.

(C) "Trapped": In this scenario, H3.3K27M is incorporated into the promoter region. Binding of EZH2 to H3.3K27M blocks EZH2 on the same and nearby nucleosomes. Thus, this region is not properly silenced and does not recruit additional silencing factors to spread H3K27me3.

Yuen and Knopfler Cancer Cell 2013

Histone variants barcoding: 2006

Histone H3 variants and their potential role in indexing mammalian genomes: The "H3 barcode hypothesis"

Sandra B. Hake and C. David Allis*

...Here, we present a hypothesis, the "H3 barcode hypothesis."

...Our hypothesis rests on the central concept that mammalian histone H3 variants (H3.1, H3.2, and H3.3), although remarkably similar in amino acid sequence, exhibit distinct posttranslational "signatures" that create different chromosomal domains or territories, which, in turn, influence epigenetic states during cellular differentiation and development.

...Although we restrict our comments to H3 variants in mammals, we expect that the more general concepts presented here will apply to other histone variant families in organisms that employ them...

Core histone variants, their functions, and features

Histone	Biological function and features	Conservation		
H3 variants				
H3.3	Gene activation, silencing, and chromosome segregation.	Yes, but in yeast, it is the only		
	Can be deposited in replication-independent way	noncentromeric H3 variant		
CenpA	Epigenetic marker of centromere	Present in most of eukaryotes, but less conserved than other H3 histones		
H3.X	Euchromatin in primates	Primate specific		
H3.4/H3t	Sperm genome and nucleolus of somatic cells	Mammalian specific		
H3.Y	Euchromatin in primates	Primate specific		
H3.5/H3.3c	Euchromatin in hominid testis	Hominid specific		
H2A variants				
H2AZ	Poising genes for activation. Gene activation, gene silencing, and chromosome segregation	Present in most of eukaryotes		
macroH2A	Association with repressed/silenced chromatin, large size due to an additional C-terminal domain	Vertebrate specific		
H2A.BBD	Splicing, replication Active transcription	Mammalian specific		
H2AX	Double-strand break repair/meiotic remodeling of sex chromosomes and genome integrity. The function is mediated by the phosphorylated form γH2A.X	Present in most of eukaryotes		
H2B variants				
TH2B	Chromatin to nucleoprotamine transition			
H2BFWT	Sperm telomere binding	Primate specific		
H2BE	Transcription regulation in olfactory neurons			

Summary of human core histone variants and associated factors

Histone	Chaperones and associated factors
H2A variants	
H2A.Z	CHZ1/NAP1/SWR1/INO80
H2A.X	FACT
macroH2A	ATRX
H2A.B forms*	N.D.
H2B variants	
(TS) H2B.1*	N.D.
H2B.W*	N.D.
H3 variants	
CENP-A	HJURP
H3.3	HIRA/ATRX/DAXX
(TS) H3.4*	N.D.