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WHAT ARE SUPERINDUCTORS? 
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Potential applications: 

 

• reduction of the sensitivity of Josephson qubits to the charge noise,  

• Implementation of fault tolerant computation based on pairs of Cooper pairs 

and pairs of flux quanta  

• ac isolation of the Josephson junctions in the electrical current standards based 

on Bloch oscillations.  

Specific to our design (tunable non-linearity) 

• Simple non-linear qubits that can be tuned from linear to non-linear regime 

• Formation of protected low energy modes expected in quantum Ising models 

(Majorana fermions) and their experimental study.  

 



GEOMETRICAL VS. KINETIC INDUCTANCE 

Geometrical inductance of a wire: ~ 1 pH/μm.  

Hence, it is difficult to make a large (1 μH → 6 kΩ @ 1 GHz) L in a planar geometry.  

 

Moreover, a wire loop possesses not only geometrical inductance, but also a parasitic 

capacitance, and its microwave impedance is limited: 
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Kinetic inductance of a superconducting wire 

can be much larger for highly resistive films: 

For d=5 nm NbN films ( =1 k ) 0.5 nH, 

for d=30 nm InO films  ( =3 k ) 2 4 nH, 
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But it is still difficult to achieve  

inductances  in μH range!  

Alternative solution – chain of large 

Josephson  

junctions (Yale) gave 0.3 μH 

Manucharian, Science 2009 



WHY DO WE NEED THEM? 



WHY DOES ONE CARE? - BLOCH OSCILLATIONS   

1. Bloch oscillations.  
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Charge oscillations 



BLOCH OSCILLATIONS 

1. Bloch oscillations.  
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Semiclassical equations:
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Charge oscillations 

Oscillations with frequency f=I/2e 

Plus slow drift down due to 

dissipation. 

 

The reasoning is correct provided that 

phase changes by many periods:  
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BLOCH OSCILLATIONS 

Allow to convert current into frequency  I=2e f 

provided that   2 QZ Z

Application: 

Josephson relation 𝑉 =
ℏ

2𝑒
 𝜔  is the basis of the voltage standard 

Dual to it : 𝐼 = 2𝑒𝜔 would be the basis of current standard.   

ω 
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𝑉 =
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2𝑒
 𝜔  𝐼 = 2𝑒𝑓  
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ENCODING QUBIT IN THE OSCILLATOR 
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FLUX PAIRING AND OTHER DEVICES 

Simplest protected qubits  - phase slip elements 

 

For phase slip elements we need inductors with 

EL that is of the order of EJ~Ec of small 

junctions.  

 

We also need even bigger inductors to form a 

large loop in which the flux would change by a 

multiple of 4π 
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MAIN IDEA : USE QUANTUM PHASE TRANSITION 



OUR SUPERINDUCTOR 

Frustrated ladder of Josephson junctions:  



Large junctions Small junctions 

Simplest qubit based on superinductor:  



EXPERIMENT SCHEMATICS 

Multiplexing – many devices with 

different EJ  of large and small 

contacts in one microwave line 



MAIN IDEA OF SUPERINDUCTORS 

Form effective potential that is soft at the bottom but does not allow phase slips 

Advantages:   

• No offset charge sensitivity. 

• Large tunable non-linearity.   

• Protection from the flux noise (no linear coupling).   

Potential can be varied from a single well to double well either by changing the 

ratio of small to large junction and by changing the flux.  



SIMPLIFIED ANALYSIS 
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ESTIMATES OF PHASE SLIP AMPLITUDE 

Transition paths that change the 

phase by 2π 
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FULL QUANTUM PROBLEM 

JL JS
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For physical parameters (charging and Josephson energies) quantum fluctuations result 

in modest renormalization of the effective energy due to short scale fluctuations:  

Quantum 4 rung 

Quantum 3 rung 

Classical  

2( ) 4
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UNDERSTANDING THE DATA 



WHAT IS REALLY MEASURED? 

Small (tiny) frequency shifts of the LC 

– resonator when “device” is excited 

by the second tone.  D 



WHAT IS REALLY MEASURED? 
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WHAT IS REALLY MEASURED? 
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Conclusion: measurement tests for the current 

operator and charge operators of the devices in 

the ground and excited states.   



RESULTS 



THEORETICAL PREDICTIONS AND COMPARISON 

WITH DATA FOR MEDIUM AND SHORT LADDERS 

N=6 N=24 

Rabi oscillations with time 

constant 1.4 μs 
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LONG CHAINS (THEORETICAL EXPECTATIONS)  

Need to take into account spatially non-uniform fluctuations  
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CRITICAL BEHAVIOR OF LONG CHAINS - DATA 

2-photon 3-photon and 4 photon transitions 

Internal low energy (Majorana) 

mode.  

Critical 

point 



LOW LEVELS OF LADDER IN THE ORDERED 

STATES 

Lowest level – two degenerate (in the 

thermodynamic limit) states. 

 

Not observable because charge operators in 

two lowest states of the global potential are 

equal.   

Numerical similations on small ladder 
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CURRENT RESEARCH 

1. Prove that low energy mode observed experimentally is indeed Majorana 

fermion.  

2. What is its coherence time (experiment)? 

3. What is the dominant mechanism of decoherence (theory)?  

4. Can we create very low energy Majorana modes by constructing smooth 

boundaries between disordered and ordered phases?  
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5. What is the dominant mechanism of decoherence in these low energy modes? 

6. Non-Abelian excitations formed when three chains interact?  



CONCLUSIONS 

1. Superinductors realized in the frustrated Josephson junction ladders show L up 

to 3μH in the fully frustrated regime.  

2. Expect no phase slip amplitude. 

3. Simplest qubit realized by superinductance has a reasonbly long decoherence 

time > 1 μs 

4. Tunable non-linearity 

5. Can be used to implement critical quantum Ising model and to realize qubits 

built on non-local Majorana modes.  

6. What are the main mechanisms of decoherence and what is intrinsic 

decoherence time of the ladders remains to be studied – the current 

decoherence time is dominated by the coupling to the microwave line? 

7. What is the coherence of internal modes?      

 


