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Explicit solvent representation requires a lot of computational time.

In some systems water molecules are ≈ 90% of the system size.

empirical models:

solvation free energy is a sum of atom or group

contributions

contributions are linear functions of SAS areas or volumes

these models incorporate the hydrophobic and electrostatic

components of solvation, but omit the solvent charges

screening

continuum electrostatics:

different dielectric constants for the solvent and the solute

interior

solve the Poisson-Boltzmann equation
Sergei Grudinin, Institute of Neurosciences and Biophysics

Introduction



Implicit models

empirical models:

a simple model: Gsolvation =
∑

i

σiASAi

effective energy function:

∆Gsolvation = ∆Greference
−

∑

j

∫

Vj

fi(rij)d
3r

GB approximations: ∆Escreening
ij = (1 −

1
ε
)

qiqj

f(ri,rj)

∆Gsolvation =
∑

i

(∆Eself
i −

1
2

∑

j !=i

Escreening
ij + ∆Enonpolar

i )

finite difference PB:

∆GPB = ∆GPB
water − ∆GPB

vacuum

∆Gsolvation = ∆GPB + γASA



Poisson-Boltzmann Equation

Gauss law in vacuum:
∇ ·

!E(!r) = 4πρ(!r)

In the media with dielectric constant ε:
!D(!r) = ε !E(!r),

∇ · ε∇φ(!r) = −4πρ,

Charge distribution:
ρ = ρfixed + ρmobile,

ρfixed =
∑

qiδ(r − ri),

ρmobile =
∑

zin0exp
−ziφ

kBT

For 1-1 salt:
ρmobile =

∑
zin0sinh(−ziφ

kBT
)

Or in the linear case:
ρmobile =

∑
zin0

−ziφ

kBT



Boundary Element Method

Electrostatic boundary conditions on the molecular surface:
Din · n = Dout · n

(Eout − Ein) · n = 4πσ

Taking into account that D = εE:

σ = ( εin−εout

4πεin

)Eout · n

On the other hand from Poisson equation:

Eout(r) =
∑

i

qi(r−ri)
εin|r−ri|3

+ 2πσ(r)n(r) +
∮ (r−rs)

|r−rs|3
σsds

And finally we get:

σ(r) =
(

εin−εout

4πεin

)

∑

i

qi(r−ri)·n(r)
εin|r−ri|3

+
(

εin−εout

2εin

)

σ(r) +
(

εin−εout

4πεin

)

∮ (r−rs)·n(r)
|r−rs|3

σsds

Or after the regrouping terms and discretization:

σj = 1
2π

εin−εout

εin+εout

sj

[

∑

i

qi(rj−ri)
εin|rj−ri|3

+
∑

k "=j

(rj−rk)
|rj−rk|3

σk

]

· nj



Matrix Form of the BEM equation

e equation can be written in a matrix form:
∑

ij Aijσj = bi

with the matrix

Aij = 2π εin+εout

εin−εout

δij − si
(xi−xj)·ni

|xi−xj|3

and the vector

bi = si

∑
k

qk(xi−xk)·ni

εin|xi−xk|3

o solve the system directly:

either calculation and storage of all the matrix A elements,

storage is O(N2)

or the Aij calculated on the fly, usage is O(N2) operations

per iteration



Matrix Form of the BEM equation

Diagonal elements of matrix A: Aii =


























2π εin+εout

εin−εout

, f lat area elements

2π εin+εout

εin−εout

−

√

πsi

K2

i

, area elements with Gaussian curvature K

4πεout

εin−εout

+
∑

i "=j

AT
ij , normalization conditions

first approximation works rather well

curvature is not easy to estimate

normalization did not advance much in our tests



Iterative Solvers

The BEM system is linear, so a number of iterative solvers exist:

Stationary Methods: can be expressed as x
(k) = Bx

(k+1) + c

Jacobi - The resulting method is easy to understand and implement, but

convergence is slow.

Gauss-Seidel - Similar to Jacobi, but a bit faster

Successive Overrelaxation (SOR) - May converge faster than

Gauss-Seidel by an order of magnitude.

To use these methods the BEM equation can be written as:

σi = Ui(σj)

Convergence depends on the matrix form

May never converge



Iterative Solvers

Nonstationary Methods for general matrices:

Generalized Minimal Residual (GMRES) - should be restarted,

otherwise requires too much memory

BiConjugate Gradient (BiCG) - convergence may be irregular

Quasi-Minimal Residual (QMR) - smooth out the irregular convergence

behavior of BiCG

Conjugate Gradient Squared (CGS) - convergence may be much more

irregular than for BiCG

Biconjugate Gradient Stabilized (Bi-CGSTAB) - obtains smoother

convergence than CGS

Chebyshev Iteration - knowledge of the extremal eigenvalues is

required

GMRES and QMR perform the best



Iterative Solvers

Comparison for different iterative algorithms for the BPTI protein

with 2500 surface elements:

CGS BiCGSTAB GMRES BiCG QMR Cheby

steps 24 23 30 36 37 -

Convergence of iterative methods. BPTI protein with point density 5 points/nm.

Tolerance = 1e-6, 2500 surface elements, no preconditioner was used



BEM against FDPB

FDPB:

- solve PB equation on a 3D grid. Storage is O(N3)

- boundary conditions must be always implied

- solved several times iteratively

- solvent/solute boundary has a finite size

- atoms are mapped on the grid

+ different dielectric constants can be used

BEM:

+ solve PB equation on a 2D grid. Storage is O(N2)

+ exact atom positions

+ solvent/solute boundary is defined by the mesh

- every region has a unique dielectric constant



Preconditioners

Preconditioned problem
PAx = Pb

How do we choose/construct P?

Simple idea: Use a (cheap!) approximation to the inverse.

P ≈ A
−1.

Pointless in its exact form!

Some popular choices:

Diagonal preconditioner (also in block form):

P = (diagA)−1

Incomplete LU factorisation:

P = (LincUinc)
−1

In general, the choice of preconditioner is problem dependent.



BEM Forces

Electrostatic energy evaluated as:

U = 1
εin

∑
i !=j

qiqj

|ri−rj|
+

∑
k,j

σkqj

|rj−rk|

Its derivatives are:
∂

∂xj
U =

∂
∂xj

( 1
εin

∑
i !=j

qiqj

|ri−rj|
) +

∑
k,j σk

∂
∂xj

qj

|rj−rk|
+

∑
k,j

qj

|rj−rk|
∂

∂xj
σk

The only problem arises with ∂
∂xj

σk in the last term. It can be found

from the matrix equation derivatives:
∂A
∂xj

σ + A ∂
∂xj

σ = ∂b
∂xj

requires derivatives of molecular surface

Another beautiful approximation for the solvation forces (Cancès

and Menucci):
∂

∂xj
Gsolv

≈
4πε
ε−1

∮
σ

2(k)(U
(j)
Γ

(k) · n(k))dk

requires calculation of the moving front U
(j)
Γ

(k)



Molecular Surfaces

Parametric surfaces:
spherical blobs with a local smoothing
Gaussian kernels

The density D in every point of the system is:

D =
∑

i exp
−ai(

|!r−!ri|
2

R2

i

−1)

applying C = ai/Ri:

D =
∑

i exp−C(|!r−!ri|
2−R2

i
)

Surface is then defined as D = 1

The difference between C(a) and ai(b) (from C. Bajaj):



Molecular Surface Derivatives

Surface D derivatives are:
∂D
∂xj

= 2C(!r − !rj)exp−C(|"r−"rj |
2−R2

j )

Surface gradient is:

!n = −2C
∑

i(!r − !ri)exp−C(|"r−"ri|
2−R2

i ) = −
∑

j
∂D
∂xj

= −∇D

Shape operator:

S = 1
‖∇D‖3













dxx(d2
y + d2

z) −dxdydyy −dxdzdzz

−dydxdxx dyy(d2
x + d2

z) −dydzdzz

−dzdxdxx −dzdydyy dzz(d
2
x + d2
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Gaussian K and mean H curvatures:

K = det(S)

H = 1/2 Tr(S)



Molecular Surface Area

Gauss-Bonnet theorem:
∫

M
KdA +

∫
∂M

kgds = 2πχ(M)

If the boundary ∂M is a union of geodesic curves:
∫

M
KdA = 2πχ(M) −

∑
αi

For triangular meshes it can be rewritten as:
∫

M
KdA =

∑
Ai − π

For a triangle ∆ABC the curvature K is:

K = K1α/hα + K2β/hβ + K3γ/hγ

where:

α/hα + β/hβ + γ/hγ = 1



Molecular Surface Area

Gaussian curvature without Shape operator: ler e uation

k = k1cos
2(θ) + k2sin

2(θ)

Having normal curvatures ci in 3 directions:






















c1 = k1cos
2(θ) + k2sin

2(θ)

c2 = k1cos
2(θ − φ1) + k2sin

2(θ − φ1)

c3 = k1cos
2(θ − φ2) + k2sin

2(θ − φ2)










cos2(θ) = c1−k2

k1−k2
; sin2(θ) = k1−c1

k1−k2

c2 − k2 = cos2(φ1)(c1 − k2) + sin2(φ1)(k1 − c1) + sin(2φ1)
√

(c1 − k2)(k1 − c1)

c3 − k2 = cos2(φ2)(c1 − k2) + sin2(φ2)(k1 − c1) + sin(2φ2)
√

(c1 − k2)(k1 − c1)

e latter system of e uation can e rewritten in terms of the Gaussian curvature

K = k1k2 and the mean curvature H = (k1 + k2)/2:







k1 + k2 =

c2−c1cos2φ1

sin2φ1
−

c3−c1cos2φ2

sin2φ2

sin2φ2

sin2φ2
−

sin2φ1

sin2φ1

k1k2 = c1(k1 + k2) − c21 − ( c2−c1cos2φ1

sin2φ1
−

sin
2φ1(k1+k2)
sin2φ1

)2



Molecular Surface Area

Or in a simpler form:






k1 + k2 = c2sin2φ2−c3sin2φ1−c1sin(2φ2−2φ1)
2sinφ1sinφ2sin(φ2−φ1)

k1k2 = c1(k1 + k2) − c2
1 − ( c2−c1cos2φ1

sin2φ1

−
sin

2φ1(k1+k2)
sin2φ1

)2

Normal curvatures ci are approximated y:






cos(α) = "n1 · "n2

sin(α/2) = c

2R

c ≡
1
R

=
√

2−2"n1·"n2

c

this approximation is much simpler than the Shape operator

works very well only for meshes with good uality triangles

large errors when φ ≈ 180◦



Meshing Techniques

marching algorithms

marching cubes

marching tetrahedra

marching triangles

decimation algorithms

edge decimation

vertex decimation

refinement algorithms

Loop algorithm

SQRT3 algorithm

postprocessing techniques



Marching Cubes

+ very robust

- poor mesh quality

Improvements:

edge decimation

subsequent prediction-correction SQRT3-like refinement

Result:

good mesh quality

adapti ity, e.g. to cur ature



Mesh Refinement

ediction step:

calculate position D on the middle o the arc AB

calculate normal nd as an average o !n1 and !n2

calculate normal curvature o the arc DOC

calculate the refined O position rom the triangle centroid

Correction step:

calculate unction value v and normal !n at point O

correct position o O by !nv+|n|x
v|n|

Results:

e prediction-correction procedure requires only a single

unction evaluation and reduces the error by ≈ 10
2 times



Mesh Refinement

Original mesh, mesh after decimation and the refined mesh:

Original Marching cube algorithm uses linear point interpolation:

!x0 =
!x−v+−!x+v−

v+−v−



Data Structure

Open Mesh library:
one verte

one face

the ne t halfedge

the opposite halfedge

optional: the previous halfedge

fast iterators over faces, verte es, etc

fast circulators over faces, verte es, etc



Fast Electrostatic Summation

N- ody solvers:

direct O(N2)

multipole O(N) − O(N log N)

analytical derivatives do not exist at atom positions

forces uctuate at low nu er of expansion terms

it is possi le to achieve a given accuracy with certain

nu er of expansion terms

multigrid O(N) − O(N log N)

at low accuracy energy conserves etter

there is a limit of accuracy

Ewald sums -O(N log N)

easy and ro ust

classical schemes exist only for periodic systems



Multipole Summation

algorithm has been extended to calculate the

transpose of matrix A

e multipole expansion M
T
n,m has a vector form and contains

three new components:

!M
T
n,m(!r) =

k
∑

i=1

qisi!niF
∗

n,m(!ri)1

Forces then calculated as:

qi∇Φ
T (!r) = Tr

[

qi

∞
∑

n=0

n
∑

m=−n

!M
T
n,m∇Gn,m(!r)

]

2



Multipole Summation

A scales linearly:

Time or calculation o one cycle o the E algorithm as a nction o number o

the boundary particles

it is aster than the direct solver only at high ≈ 10
4

number o particles



Numerical Tests

(a olecular sur ace o the PTI protein. arching cubes algorithm or the sur ace

extraction has been used. (b Error in solvation energy versus density o sur ace point or

the marching cubes algorithm.



Numerical Tests
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(a) Three different marching schemes are compared. (b) Solvation energy for the BPTI

protein at different grid point densities.


