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Concept and history

As it is typical in philosophy I pose more questions than give answers.

In the absence of a formal definition under an analog computer usually
is meant a physical device in which some physical values before
executing a physical process are treated as an input, and some
physical values after executing the process are treated as an output.

Analog computers appeared much earlier than the modern digital
ones. One of the first was the astrolabe invented in Greece around II
century BC. They were used mainly to calculate astronomical
positions.

I don’t dwell much on the history: what survived till our days is the slide
rule invented in XVII century after logarithms were introduced.

In XIX century first integrators and differential analyzers appeared that
could calculate the area and solve differential equations.
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Linkages
Also in XIX century linkages were popular, in particular one of them
due to P.L. Chebyshev. Linkage consists of several links on the plane
connected by articulations. It was proved that with the help of suitable
linkages one could draw an arbitrary algebraic curve.

In other words, linkages are able to emulate arithmetic, so any
polynomial: say, a coordinate of a point y is a certain polynomial in a
coordinate of a point x , thus conversely the coordinate of x is an
algebraic function in the coordinate of y .

The latter observation was exploited by N. Mnev who has proved that
classifications of linkages and arrangements of lines on the plane are
apparently, unfeasible since they both lead to classifications of real
semialgebraic sets (viewed as hopeless).
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Integrators, neural networks
In XX century integrators were utilized till 60-s, in Russia there was in
use, for example the water integrator based on the law of Archimedus
(the latter allows one to compute the volume of an arbitrary
3-dimension body), but more efficient integrators relied on electrical
circuits composed from capacitors and resistors.

More recently, neural networks in which gates use arithmetic with real
numbers (electrical activity of neurons) were considered as
prospective for analog computations.

Also biological computers were developed in which every cell of a
biological system plays a role of a processor, this allows a
parallelization, otherwise they work (very slow) as usual computers.

There is a so-called Zeno’s phenomenon when an analog computation
within a finite interval of time fulfils infinite number of discrete steps.
Definitely, such models do not make sense, the models we consider,
avoid Zeno’s phenomenon. In this case the continuous time T
corresponds informally to the discrete moment [T ].
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Church’s thesis for analog computers?
In any case an analog computer is a device which relies on a certain
physical or chemical law, so if x is a real input then y = f (x) is a real
output where f is a function describing the underlying law.

Instead of calculations by a digital computer, an analog computer
requires a measurement of y , and therefore the quality of the output
depends on precision of the measurement. Also it is more difficult to
control errors emerging due to possible noise in an analog computers
rather than in digital ones. Say, if a physical process on which an
analog computer is based is unstable it could lead to a big error of the
output as a result of a small error in the input.

One can convert f into an integer function [f ] : Z → Z where
[f ](x) := [f (x)]. Then a question arises which can be called

Church’s thesis for analog computers: Is [f ] a recursive function?

On the other hand, O. Burnez, D. Graca, A. Pouly have designed
analog computers based on differential dynamical systems which can
compute any recursive function.
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Universal analog computer?

To prove Church’s thesis for analog computers one has to define the
latter formally (so far, just some particular constructions of analog
computers were suggested).

On the other hand, to refute the Church’s thesis it would be sufficient to
produce a reasonable analog computer which computes a
non-recursive function. But even if the latter was possible, still a
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Turing machines = General Purpose Analog
Computers

C. Shannon introduced General Purpose Analog Computers (GPAC).
They compute real functions being solutions of autonomous dynamical
systems with polynomial coefficients. In GPAC the euclidean norm of
solutions plays the role of the space of computations. In particular, the
space could be exponentially larger than the time (unlike Turing
machines for which the space always does not exceed the time).

O. Burnez, D. Graca, A. Pouly have established the equivalence up to
a polynomial in pairs of resources (time, space) between Turing
machines and GPAC. In particular, the set of functions computed by
GPAC coincides with the set of recursive functions. For our further
discussion on P-NP problem we can conclude that GPAC can’t solve
NP-hard problems in polynomial time (unless P 6= NP).
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Blum-Shub-Smale machines
An attempt of a mathematical formalism of analog computers provide
Blum-Shub-Smale (BSS) machines. They are able to perform
arithmetic operations with reals and make a branching according to the
sign of a result. Sometimes arbitrary real constants are admitted in
BSS machines and also taking the integer part. Then BSS machine
can be treated as computing a function from integers to integers, and
M. Shub, S. Smale have noticed that such machines can compute
non-recursive functions (due to arbitrariness of invoked real constants).

In particular, a question arises in connection with Church’s thesis for
analog computers: can uncomputable reals occur in physical laws?

Uncomputable solutions of differential equations
M. Pour-El, J. Richards have produced a system of differential
equations with uncomputable solutions. If one could design an analog
computation with the behaviour described by such a system of
differential equations then one would refute Church’s thesis for analog
computers.
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Can NP-hard problems be solved by analog
computer in polynomial time?

We say that a computational problem A(n) where n is an integer, is
solved by an analog computer C within time t(log n) (taking into
account that [log n] + 1 is the bit-size of n) if t(log n) majorates the
overall time of both designing C(n) and its running time. Typically (but
not necessary), the running time of an analog computer is much less
the time of its designing. This is the case, say, for analog computers
based on electrical circuits.

Yu. Matiyasevich was one of the first who tried to answer the question

Is there an analog computer which solves an NP-hard problem
within t(log n) < poly(log n) time?

But it seems that rigorously speaking this question still remains open.
There are common difficulties in diverse attempts towards answering
this question.
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Some difficulties in solving NP-hard problems by
means of analog computers

The first difficulty arises when one wants to encode an integer n: it is
reasonable to encode it by a value of some physical variable of a
magnitude close to n, but then its ”physical size” n is exponential in
bit-size [log n] + 1. That is why in analog devices integers are often
encoded by their bits, while each bit is encoded in an analog way.

Another difficulty is that many analog computers bring an underlying
dynamical system to a stable state, say a local minimum of a certain
target function. Examples of this are the minimal-tension surface of a
soap film, or the steepest gradient of a falling stone from the hill, or a
minimal energy state in the Ising spin-glass model etc. But to solve an
NP-hard problem one has typically to find a global minimum, and there
can be an exponential number of local minima.
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More difficulties in solving NP-hard problems by
means of analog computers

For analog computers based, say on linkages one has to solve the
following problem: let a device have k links, then one has to test
whether some m links (for a certain m) intersect at one point? It leads
to a search of

(k
m

)
combinations, and besides that to verify that these

m links indeed have a common point which depends on a precision of
measurements.

In other words, it is unclear how to encode combinatorics involving
discrete sets of exponential size hidden in NP-hard problems with a
help of a continuous analog device in an efficient manner.

There is even an opinion that impossibility of solving NP-hard
problems within polynomial time by means of a physical device is a law
of physics, like conservation of energy or the principle of uncertainty.
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Finding a shortest path by an analog computer?
Consider an NP-hard problem in which 2 points are given in
3-dimensional space and in addition several obstacles being convex
polyhedra. The problem is to find the shortest path connecting these 2
points and avoiding the obstacles (or at least the length of this path).

One can try to place a source of the light at one point and measure the
time when the light reaches the second point with the hope that the
light follows the shortest path according to Fermat principle.

A difficulty with this approach is that the photons propagate in all
possible directions, and the intensity of a signal which reaches the
second point can be too little to detect it: the intensity is proportional to
the deal of trajectories with lengths close to the shortest one.

To avoid this difficulty related to an exponentially small deal of ”good”
objects (photons, short trajectories and at the end the solutions of an
NP-hard problem) M. Ohya, I. Volovich suggest to use quantum chaos
as exponential amplifier, and show that their model can solve NP-hard
problems. The question is, how is it realistic?
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Quantum computers
Some hope in solving hard combinatorial problems has emerged with
appearance of the theory of quantum computers (leaving aside the
difficulties predicted by R. Feynman of their practical realizing, which is
still far from being executed). Better to speak more precisely about the
model of D. Deutsch (it has some predecessors like an idea conceived
by Yu. Manin).
The model of D.Deutsch consists in application of a unitary operator to
a normalized vector. The basis of the space of vectors consists in
n-tuples of the states (say, 0 or 1) of what is called q(uantum)-bits.
Thus, the dimension of the space is 2n. For any vector v a complex
coefficients a of its expansion (as a linear combination of basis
vectors) at a particular basis vector e is called the amplitude of e in v ,
and |c|2 equals the probability of appearance e while (quantum)
observation of v .
We mention that also adiabatic machines were studied, and A. Kitaev
has proved their equivalence (from the complexity point of view) to the
discussed model of D. Deutsch.
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has proved their equivalence (from the complexity point of view) to the
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Shor’s factoring algorithm and its menacing
consequences for cryptography
The famous quantum algorithm of P. Shor can factor integers within
polynomial time. Since the security of the overwhelming part of the
modern practical cryptography, like in bank cards, relies on the
presumable difficulty of factoring, an eventual design of quantum
computers would break the modern cryptography and force to change
cryptosystems considerably, but still the design of quantum computers
is far from realization.
It is an open question whether quantum computers can solve NP-hard
problems within polynomial time? The best result in this direction is
Grover’s algorithm which allows one to speed-up solving NP-hard
problems by the square root.
In fact, quantum computers have features of both analog computers
(since they involve observations) and of digital computers (since they
deal with q-bits and with their discrete states after observations).
Quantum computers are equivalent to Turing machines up to
exponential time.
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Quantum cryptography
Quantum computers suggest an alternative approach to cryptography:
the well-known cryptosystem by C. Benneth, G. Brassard. It proposes
a completely different approach to transmitting secrets via a public
channel.

In a classical cryptography the paradigm is to transmit an encoded
message in such a way that an adversary observing the transmission
in a public channel would not be able to reveal the original message.
While quantum cryptography makes use of the quantum phenomenon
that just the observation of a q-bit destroys its state, and therefore the
receiver of the message can detect that an adversary has made an
observation and abort the communicating session. Then they start a
new session.

Thus, the quantum cryptography is not quite reliable because an
adversary can observe all the sessions and completely prevent from
communicating.
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Quantum teleportation

Another application of quantum devices which was successfully
realized, is a teleportation. It is based on the quantum phenomenon (it
is called Einstein-Podolsky-Rosen paradox) that if there is a pair of
entangled photons and one of them is sent to a remote receiver then
the observation of the state of one photon determines the state of its
remote counterpart.

Perhaps, this can be used for remote communications and for
cryptography.
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Cryptography and assumption of existence of
one-way functions
While the future of analog computations is not quite clear, their
applications in cryptography look more prospective.

In the conventional cryptography when Bob wants to transmit his
secret message m to Alice via a public channel, he fulfils it by means
of a one-way function f for encoding m. Informally speaking, it is easy
to compute c = f (m), where c is the code transmitted via the public
channel, but on the other hand, for an adversary who observes just c it
is presumably difficult to restore m.

Moreover, just the existence of a cryptosystem implies the existence of
a one-way function, thus one-way functions are inevitable in the
conventional cryptography.

In its turn, the existence of a one-way function would entail that
P 6= NP, therefore a proof of existence of a one-way function is
unlikely. Thus, the security of the conventional cryptography relies on
an unproved assumption.
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Cryptography based on physical principles
Jointly with V. Shpilrain we have suggested cryptosystems based just
on physical laws, so their security does not depend on any
mathematical assumptions. I describe roughly the simplest (but not the
most efficient) among them just to explain a basic idea.
Let Alice and Bob communicate via a public wave channel, and they
have agreed in advance that they emit waves of the agreed frequency
and phase. If Bob wants to transmit a (secret message) integer m he
emits a wave with amplitude m, while Alice emits a wave with some
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Efficiency of cryptosystems based on physical principles
The described cryptosystem seems to be more efficient than the
conventional ones because it does not require calculation of a one-way
function, but on the other hand, as always with analog computers,it
depends on the precision of measurements.

Philosophical conclusion
Perhaps, the people will come back to analog computers, but in a
higher level of development on the dialectics spiral.

Dima Grigoriev (CNRS) Analog computations 22.04.14 19 / 19



Efficiency of cryptosystems based on physical principles
The described cryptosystem seems to be more efficient than the
conventional ones because it does not require calculation of a one-way
function, but on the other hand, as always with analog computers,it
depends on the precision of measurements.

Philosophical conclusion
Perhaps, the people will come back to analog computers, but in a
higher level of development on the dialectics spiral.

Dima Grigoriev (CNRS) Analog computations 22.04.14 19 / 19



Efficiency of cryptosystems based on physical principles
The described cryptosystem seems to be more efficient than the
conventional ones because it does not require calculation of a one-way
function, but on the other hand, as always with analog computers,it
depends on the precision of measurements.

Philosophical conclusion
Perhaps, the people will come back to analog computers, but in a
higher level of development on the dialectics spiral.

Dima Grigoriev (CNRS) Analog computations 22.04.14 19 / 19


