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Complexity imposes the restrictions on feasibility of computations.
The main issue of the talk will be the choice of the language of the
data in computations. I’ll illustrate the importance of the language for
efficiency by several results in complexity.

Symbolic computations
First we consider the language of symbolic computations. The input
data are symbols, the computations manipulate with intermediate
results treated as symbols, the output result is an expression in the
input symbols.
An advantage of the symbolic approach is that its result describes the
general behaviour in terms of the input. After that if necessary one can
substitute in the result the numerical data from the input and obtain a
numerical output.
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Polynomial complexity of symbolic linear algebra

Especially successful the symbolic approach has shown to be in
algebraic computations. Algebra fits well for algorithms, it is not by
chance that both words algebra and algorithm stem from the same
name of Al-Horesmi (X-th century).
The basic area for algebraic (as well as differential) computations is
linear algebra. It deals with matrices A = (aij), its entries
aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n are treated as symbols.
The classical Gaussian elimination allows one to bring A to a canonical
(trapezium) form from which one can easily yield a basis of the space
of solutions of a linear system. The Gaussian elimination can be
viewed as a tree-like symbolic algorithm with branchings according to
vanishing certain intermediate algebraic expressions in aij .
The number of algebraic operations in Gaussian elimination is
polynomial in m, n, and this number is called the algebraic complexity.
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Polynomial complexity of symbolic linear algebra
(continued)
The running time of the algorithm has to take into account the bit
complexity, so the number of operations with bits. Therefore, it is
necessary to bound the bit size of the entries of the intermediate
matrices in the course of carrying out the Gaussian elimination. To this
end it appears that each entry is the quotient of two minors of the input
matrix. Whence we conclude that the bit complexity of the Gaussian
elimination is polynomial.
Polynomial complexity is viewed as the first approximation of an
algorithm to be efficient. This view is compatible with the P-NP
problem.
In the period of 1969-1986 the degree of the polynomial complexity
bound was improved from 1.5 in the Gaussian elimination to 1.19 due
to the efforts of Strassen, Pan, Schönhage,
Bini-Capovani-Lotti-Romani, Coppersmith-Winograd, and this
improved algorithm is still in the paradigm of symbolic computations.
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Complexity of polynomial factoring
The next challenging computational problem in algebra is polynomial
factoring, so for a polynomial f ∈ F [X1, . . . ,Xn] to find its irreducible
factors f = f1 · · · fs. It was studied by Newton, Bézout, Gauss,
Kronecker. In the textbooks one can find the Kronecker’s procedure for
the field F = Q of rational numbers whose complexity is exponential.
After the beginning of the development of the complexity theory a
question was posed, whether one can factor polynomials within
polynomial complexity?
The history of attempts to answer this question was rather long. The
first step was made by D.K.Faddeev-A.I.Skopin (1959) who have
designed a polynomial complexity algorithm to test whether a
univariate polynomial f ∈ GF (pm)[X ] over a finite field GF (pm) is
irreducible. The algorithm was never published, and later it was
rediscovered by Berlekamp (1968). Then the algorithm was modified
by Rabin (1979) to factor polynomials within probabilistic polynomial
complexity.
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Complexity of polynomial factoring (continued)
The question whether it is possible to factor polynomials in GF (pm)[X ]
within the deterministic polynomial complexity, remains open. Now a
common conjecture is that one can do it under the assumption of the
extended Riemann hypothesis.
When the field F = Q the situation is better. For univariate polynomials
Lenstra-Lenstra-Lovasz (1982) have invented an algorithm which
factors polynomials from Q[X ] within polynomial complexity. After that
Chistov-G. (1982) have designed an algorithm which factors
multivariable polynomials within polynomial complexity, in particular
from Q[X1, . . . ,Xn] or with algebraic number coefficients Q[X1, . . . ,Xn].
For finite fields GF (pm)[X1, . . . ,Xn] our algorithm reduces (within
polynomial complexity) factoring to univariate polynomials from
GF (pm)[X ] (discussed earlier).
These polynomial complexity algorithms involve quite sophisticated
mathematics, it is also the feature of other advanced algorithm in the
complexity theory.
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Symbolic solving systems of polynomial
equations

Now we proceed to the problem of solving systems of polynomial
equations
fi = 0, 1 ≤ i ≤ k , fi ∈ F [X1, . . . ,Xn]
with solutions x = (x1, . . . , xn) ∈ F n.
Actually, the origin itself of algebra is due to this problem, while the
historical development of algebra has left its origin quite away. With the
appearance of the complexity theory this original goal is revisited.
We’ll suppose that the field F is algebraically closed, for example
F = C,Q is the field of complex or algebraic numbers. It is known that
for some classes of fields the problem of solvability of a system of
equations over this field is algorithmically undecidable.
Now arises a conceptual question, what does it mean to solve a
system of polynomial equations?
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Gröbner bases: monomial orderings

A widely spread approach to the problem of solving systems of
polynomial equations involves Gröbner bases. The latter is a
fundamental notion, first perhaps, introduced by Janet (1924) in a
more general setting of differential operators rather than polynomials.
Afterwards, this notion was rediscovered by Ritt (1930), Hironaka
(1964) and finally by Gröbner (1965) and nowdays is called after the
name of the latter.
Let me briefly remind the idea of Gröbner bases. Fix a linear well
ordering ≺ on the (integer) vectors of exponents i1, . . . , in ≥ 0 being
compatible with the addition: if a ≺ b then a + c ≺ b + c. Linear
ordering means that any two vectors are comparable, and well
ordering means that any set of vectors contains the minimal one.
For any polynomial f ∈ F [X1, . . . ,Xn] denote by lm(f ) its leading (with
respect to the fixed ordering) monomial. Denote by
〈f1, . . . , fk 〉 ⊂ F [X1, . . . ,Xn] the ideal generated by f1, . . . , fk .
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Gröbner bases: definition and division with
remainder

g1, . . . ,gs ∈ F [X1, . . . ,Xn] form a Gröbner basis if
lm〈g1, . . . ,gs〉 = 〈lmg1, . . . , lmgs〉.
The meaning of a Gröbner basis is that it allows one to generalize the
division with remainder with respect to g1, . . . ,gs. Namely, if for a
polynomial f ∈ F [X1, . . . ,Xn] its leading monomial
lmf ∈ 〈lmg1, . . . , lmgs〉, i. e. lmf ∈ 〈lmgi〉 for some 1 ≤ i ≤ s then one
can divide with remainder f = Q · gi + R where lmR ≺ lmf . Otherwise,
if lmf /∈ 〈lmg1, . . . , lmgs〉 then f /∈ 〈g1, . . . ,gs〉.
Gröbner bases approach consists in constructing a Gröbner basis of a
given ideal and allows one to answer the question on solvability of a
system of polynomial equations fi = 0, 1 ≤ i ≤ k . The latter is
equivalent to that 1 /∈ 〈f1, . . . , fk 〉 due to the Hilbert’s Nullstellensatz
which is equivalent in its turn to that 1 is not among the elements of the
Gröbner basis of the ideal 〈f1, . . . , fk 〉.
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Gröbner bases: definition and division with
remainder

g1, . . . ,gs ∈ F [X1, . . . ,Xn] form a Gröbner basis if
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The meaning of a Gröbner basis is that it allows one to generalize the
division with remainder with respect to g1, . . . ,gs. Namely, if for a
polynomial f ∈ F [X1, . . . ,Xn] its leading monomial
lmf ∈ 〈lmg1, . . . , lmgs〉, i. e. lmf ∈ 〈lmgi〉 for some 1 ≤ i ≤ s then one
can divide with remainder f = Q · gi + R where lmR ≺ lmf . Otherwise,
if lmf /∈ 〈lmg1, . . . , lmgs〉 then f /∈ 〈g1, . . . ,gs〉.
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Gröbner bases: applications and complexity
If a system fi = 0, 1 ≤ i ≤ k has a finite number of solutions, one can
read them from the Gröbner basis. Otherwise, if a system has an
infinite number of solutions, it is difficult to extract one of them from the
Gröbner basis. However, the Gröbner basis allows one to provide
some partial information about the solutions, in particular the
dimension of the variety of solutions.
Buchberger (1973) has suggested an algorithm for computing a
Gröbner basis of an arbitrary polynomial ideal. There is an example
due to Mair-Meyer (1982) of an ideal whose Gröbner basis has
necessary double-exponential size. Thus, from the complexity point of
view the Gröbner bases are not satisfiable, although in computer
experiments the Buchberger’s algorithm runs quite fast. This means
that the worst-case examples like the one due to Mair-Meyer are not
typical. On the other hand, the double-exponential complexity upper
bound on Gröbner bases was established by Bayer, Giusti,
Mora-Möller (1983).

Dima Grigoriev (CNRS) Complexity in computer algebra 7.5.13 10 / 39
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bound on Gröbner bases was established by Bayer, Giusti,
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Gröbner basis. However, the Gröbner basis allows one to provide
some partial information about the solutions, in particular the
dimension of the variety of solutions.
Buchberger (1973) has suggested an algorithm for computing a
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bound on Gröbner bases was established by Bayer, Giusti,
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Choice of algorithmic language: algebra or
geometry?

Hilbert’s Nullstellensatz provides a duality between the variety of
solutions of a system of polynomial equations (so to say, geometry),
and on the other hand, the radical of the ideal generated by the system
(so to say, algebra). Gröbner bases fit well for manipulations with
ideals (in particular, a Gröbner basis allows one to test membership to
the ideal), but Gröbner bases do not help much to answer geometric
questions on the variety of solutions.
That is why Chistov-G.(1983) have introduced a different (geometric)
language to solve systems of polynomial equations.
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Geometric language for solving systems of
polynomial equations

Denote by
V := V (f1, . . . , fk ) = {x := (x1, . . . , xn) ∈ F n : fi(x) = 0, 1 ≤ i ≤ k}
the variety of solutions of a system. There is a unique decomposition
V = ∪jVj of V into its irreducible components. Our algorithm finds all
Vj .
If k = 1 then the variety V (f1) is a hypersurface (so, has the
codimension 1) in F n, its irreducible components V (f1) = ∪1≤j≤sVj are
also hypersurfaces being in a bijective correspondence with the
irreducible factors of the polynomial f1 =

∏
1≤j≤s gj , i. e. Vj = V (gj).

Thus, the polynomial factoring problem is a particular case of the one
of solving systems of polynomial equations in our setting.
How to give algorithmically an irreducible component Vj of V?
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Algorithmic representation of an irreducible
variety
We represent an irreducible component Vj in two dual ways. The first
one is by a system of polynomials h1, . . . ,hl ∈ F [X1, . . . ,Xn] whose
variety of zeroes Vj = V (h1, . . . ,hl) coincides with Vj .
The second way is by means of a generic point of Vj . Let the
dimension dim(Vj) = m. Our algorithm yields a transcendental basis
Xi1 , . . . ,Xim of Vj among X1, . . . ,Xn and constructs explicitly an
isomorphism

F (Vj) ∼ F (Xi1 , . . . ,Xim)[θ]

of the field F (Vj) of rational functions on Vj . Herein
θ = α1 · X1 + · · ·+ αn · Xn is a linear combination of X1, . . . ,Xn. For the
primitive element θ a minimal polynomial φ ∈ F (Xi1 , . . . ,Xim)[Z ] is
produced where φ(θ) = 0. The algorithm gives the isomorphism with
the help of rational functions

Xt = pt(Xi1 , . . . ,Xim , θ)/q(Xi1 , . . . ,Xim , θ), 1 ≤ t ≤ n.
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Complexity of solving systems of polynomial
equations
The complexity of the described generic point is exponential which is
much less than the mentioned double-exponential complexity bound
on Gröbner bases. One cannot expect an essentially better bound
since the problem of solvability of polynomial equations is NP-hard.
Moreover, the exponential bound is close to sharp if we want to find
irreducible components even in case of a finite number of solutions
(rather than just to answer the question on solvability of a system).
The algorithm constructs the irreducible components Vj recursively,
and in the course of recursion both representations: by a system of
equations for Vj and by its generic point are crucial and their duality is
exploited. In fact, the achieved improvement of the complexity bound is
mainly due to the right choice of the language of representation of an
irreducible variety in two dual ways. The duality means that the generic
point allows one to produce points of the variety (informally speaking,
builds the variety from inside), while the equations provide the
restrictions on the variety (informally speaking, from outside).

Dima Grigoriev (CNRS) Complexity in computer algebra 7.5.13 14 / 39



Complexity of solving systems of polynomial
equations
The complexity of the described generic point is exponential which is
much less than the mentioned double-exponential complexity bound
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Producing solutions of a system of equation

When dimVj = 0, so Vj is just a point, the generic point outputs Vj
explicitly. When dimVj > 0, so Vj is infinite, the generic point allows
one to produce as many points as one wishes. Also the generic point
exhibits the dimension of Vj .
Involving generic points one can test whether a variety is a subvariety
of another one.
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P-NP problem and solving systems of polynomial
equations

Consider the following system of n + 1 quadratic equations in n
variables

X 2
i = Xi , 1 ≤ i ≤ n, c1 · X1 + · · ·+ cn · Xn = c

called the KNAPSACK Problem

P=NP is equivalent to that there is an algorithm with polynomial
complexity to test whether the KNAPSACK Problem has a solution.
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Complexity of quantifier elimination in the
first-order theory of algebraically closed fields
The problem of solving systems of polynomial equations is a particular
case of the one of quantifier elimination. Namely, let a formula

∃X11 · · · ∃X1n1∀X21 · · · ∀X2n2 · · · ∃Xa1 · · · ∃XanaQ

be given where Q is a quantifier-free formula with atomic subformulas
of the type f = 0 for polynomials
f ∈ F [X11 . . . ,X1n1 ,X21, . . . ,X2n2 , . . . ,Xa1, . . . ,Xana ,X1, . . . ,Xn].
The problem is to find an equivalent quantifier-free formula with atomic
subformulas of the type g = 0 for polynomials g ∈ F [X1, . . . ,Xn]. Such
a quantifier-free formula exists due to Tarski-Seidenberg theorem
(1930). The complexity of the latter theorem is enormous. Heintz
(1982) has designed a better algorithm for quantifier elimination with
the double-exponential complexity. Chistov-G.(1984) have suggested a
quantifier elimination method with a further improvement of the
complexity.
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Eliminating a single quantifier block: projecting a
variety
It suffices to eliminate a single existential quantifier block in a formula
∃Y1 · · · ∃Yn1Q where a quantifier-free formula Q contains atomic
subformulas of the type f = 0 for polynomials
f ∈ F [Y1, . . . ,Yn1 ,X1, . . . ,Xn]. In a different language the formula
determines a projection W of the set V (Q) ⊂ F n1+n of the points
satisfying Q, in the space F n with the coordinates X1, . . . ,Xn.
The general idea of the elimination is a ”parametrizing” of the algorithm
solving systems of polynomial equations. So, the algorithm treats Q as
a system of polynomial equations and inequalities in the variables
Y1, . . . ,Yn1 with parameters X1, . . . ,Xn. Applying to Q the algorithm
solving systems of equations leads to several branchings according to
whether certain polynomials in X1, . . . ,Xn vanish. Thus, we get a
tree-like algebraic algorithm in the variables X1, . . . ,Xn. Each leaf L of
this tree provides some algebraic conditions in X1, . . . ,Xn which
determine a set UL ⊂ F n being pairwise disjoint for different leaves.
The required projection W is the union of appropriate sets UL.
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Complexity of quantifier elimination

The complexity of this quantifier elimination algorithm is exponential for
a fixed number a of quantifier alternations and depends
double-exponentially on a, so being sharp in accordance with the lower
bound due to Davenport-Heintz (1986).
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Solving systems of polynomial inequalities over
the reals
Now consider polynomials f1, . . . , fk ∈ R[X1, . . . ,Xn] with real
coefficients, and we are looking for solutions of a system of polynomial
inequalities fi ≥ 0, 1 ≤ i ≤ k . Solutions are real algebraic vectors, so
we need to specify how the algorithm describes a real algebraic
number. While studying (complex) algebraic numbers b ∈ Q it suffices
to indicate a minimal polynomial h ∈ Q[Z ] such that h(b) = 0: all the
roots of h form a conjugacy class and all the conjugate roots are
equivalent.
When in addition, b ∈ R ∩Q is a real algebraic number, the algorithm
specifies this particular root of h by means of indicating a real interval
which contains this unique root b of h.
The algorithm tests whether a system fi ≥ 0, 1 ≤ i ≤ k has a real
solution, and if yes then outputs one such solution. The coordinates of
this solution are real algebraic numbers given by the algorithm with the
help of intervals as described.
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Complexity of solving systems of polynomial
inequalities

The complexity of this algorithm is exponential (G.-Vorobjov (1984)),
and again one cannot expect much better bound because the problem
of solvability of systems of polynomial inequalities is NP-hard.
Moreover, solvability of a system of just two inequalities, one being a
cubic and another linear, is NP-hard. On the contrary, G.-Pasechnik
(2004) have designed an algorithm which solves a system of quadratic
inequalities fi ≥ 0, 1 ≤ i ≤ k within the complexity polynomial for any
fixed k .
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Infinitesimals in symbolic computations
One of the important tools in the algorithm solving systems of
polynomial inequalities is explicit using infinitesimals. To illustrate,
consider a particular problem of verifying existence and finding
(provided it does exist) a real zero x ∈ Rn of a polynomial
f ∈ R[X1, . . . ,Xn]. When f is non-singular, i. e. the system
f = ∂f

∂X1
= · · · = ∂f

∂Xn
= 0 has no complex zeroes one can verify

existence and find a real zero of f by means of reduction to the
complex case (so-called, the critical points method). Now let f be
singular.
Introduce an infinitesimal ε. Formally, consider an ordered field R(ε)

with the ordering 0 < ε < a for any 0 < a ∈ R and its real closure R̃(ε).
Then the polynomial f 2 − ε ∈ R̃(ε)[X1, . . . ,Xn] is non-singular, and one
can verify existence and find a zero y ∈ (R̃(ε))n of f 2 − ε. Here we
exploit the Tarski transfer principle for real closed fields. Then,
informally, the algorithm substitutes 0 instead of ε in y , the resulting
y(0) ∈ Rn is a real zero of f .
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Leibniz’ vs. Newton’s approaches in symbolic
computations

This idea of explicit involving infinitesimals in the symbolic algorithms
has appeared to be fruitful for improving complexity. It is in a spirit of
the language of Leibniz in analysis vs. the language of Newton based
on the concept of the limit.
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Quantifier elimination in the first-order theory of
real closed fields
Similar to the case of the complex field one considers formulas of the
type

∃X11 · · · ∃X1n1∀X21 · · · ∀X2n2 · · · ∃Xa1 · · · ∃XanaQ

where the quantifier-free formula Q as its atomic subformulas contains
inequalities of the form f ≥ 0 for polynomials
f ∈ R[x11, . . . ,Xasa ,X1, . . . ,Xn].
Tarski (1930): a quantifier elimination method for these formulas, its
complexity is enormous. Collins (1973): a quantifier elimination
procedure with the double-exponential complexity.
Similar to the complex field case a quantifier elimination algorithm was
designed by G. (1984), Heintz-Roy (1986) by means of parametrizing
the algorithm solving systems of polynomial inequalities. The
complexity of this algorithm is exponential for a fixed number a of
quantifier alternations. The latter bound is sharp due to the example of
Davenport-Heintz (1986).
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Complexity of constructing connected
components of a semialgebraic set
A semialgebraic set
S := S(f1 ≥ 0, . . . , fk ≥ 0) = {x ∈ Rn : f1(x) ≥ 0, . . . , fk (x) ≥ 0}
is the set of points satisfying a system of inequalities.
Similar to the complex field case a question arises how to output the
set S algorithmically? A relevant language appears to be the
connected components S = tjSj . How to find the connected
components Sj?
One can get Sj applying the algorithm by Collins (1973) which provides
the cylindrical algebraic decomposition of a semialgebraic set.
Moreover, the cylindrical algebraic decomposition allows one to obtain
the topological structure of a semialgebraic set, in particular, the
homology groups. But the complexity of Collins’ method is
double-exponential. G.-Vorobjov (1988): an algorithm for finding
connected components within exponential complexity. It is an open
problem whether one can find the topological structure within
exponential complexity?
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One can get Sj applying the algorithm by Collins (1973) which provides
the cylindrical algebraic decomposition of a semialgebraic set.
Moreover, the cylindrical algebraic decomposition allows one to obtain
the topological structure of a semialgebraic set, in particular, the
homology groups. But the complexity of Collins’ method is
double-exponential. G.-Vorobjov (1988): an algorithm for finding
connected components within exponential complexity. It is an open
problem whether one can find the topological structure within
exponential complexity?
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Complexity of Nullstellensatz

Remind that Hilbert’s Nullstellensatz states that a system of
polynomials f1, . . . , fk ∈ C[X1, . . . ,Xn] has no complex zeroes iff the
ideal 〈f1, . . . , fk 〉 3 1 contains 1. Equivalently, 1 =

∑
1≤i≤k hi · fi for

suitable polynomials h1, . . . ,hk ∈ C[X1, . . . ,Xn].
Let deg(fi) < d , 1 ≤ i ≤ k . First the double-exponential bound on
deg(hi) < d2O(n)

was established by Hermann (1926). The original
Hilbert’s proof (1890) was non-constructive. Brownawell (1986),
Giusti-Heintz (1988): deg(hi) < dO(n) being sharp (Sometimes, the
latter bound is called the Effective Nullstellensatz).
For the problem of membership to an ideal, so whether
g =

∑
1≤i≤k hi · fi for given g, f1, . . . , fk (rather than of membership of 1

to an ideal as in the Nullstellensatz), much worse double-exponential
bound deg(hi) < d2O(n)

is sharp (due to the example of Mair-Meyer).
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Positivstellensatz: its complexity?

To formulate a real field analogue of the Nullstellensatz (called
Positivstellensatz) one needs to replace the concept of the ideal by the
one of the cone. The cone C := C(f1, . . . , fk ) 3 f1, . . . , fk for real
polynomials f1, . . . , fk ∈ R[X1, . . . ,Xn] is generated recursively by the
following operations
• if g1,g2 ∈ C then g1 + g2 ∈ C;
• if g1,g2 ∈ C then g1 · g2 ∈ C;
• g2 ∈ C for any g ∈ R[X1, . . . ,Xn].
The Positivstellensatz claims that a system of inequalities
f1 ≥ 0, . . . , fk ≥ 0 has no real solution iff −1 ∈ C. The Positivstellensatz
generalizes the 17-th Hilbert’s problem solved by Artin in 1927.
Unlike the Nullstellensatz, the complexity bound on the
Positivstellensatz is unknown. The difficulty is that the existing proofs
of the Positivstellensatz involve the model theory (the compactness
theorem based on the axiom of choice).
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Resolution of singularities of varieties

Let V be a variety over a field of characteristic 0. A smooth variety U is
a resolution of singularities of V if dimU = dimV and there exists an
epimorphism φ : U → V such that φ is a local isomorphism at a
neighborhood of any smooth point of V .
Hironaka (1964) has designed an algorithm for resolution of
singularities of an arbitrary variety V . His algorithm is quite
complicated, and enormously complicated is the proof of its
correctness.
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Complexity of resolution of singularities

To formulate a complexity bound of resolution of singularities briefly
remind the Grzegorczyk’s hierarchy E0 ⊂ E1 ⊂ · · · of the
primitive-recursive functions. Each class Ek is closed under the
composition. E0 contains the functions x 7→ x + const . Class E1

contains the linear functions x 7→ const · x . Class E2 contains all the
polynomials. If functions h(X1, . . . ,Xn), g(Z ,Y ,X1, . . . ,Xn) ∈ Ek then
the function f (Y ,X1, . . . ,Xn) defined by recursion
• f (0,X1, . . . ,Xn) = h(X1, . . . ,Xn);
• f (Y + 1,X1, . . . ,Xn) = g(f (Y ,X1, . . . ,Xn),Y ,X1, . . . ,Xn)
belongs to Ek+1. In particular, E3 contains all the towers of the
exponential function.
The complexity of resolution of singularities of a variety V with
m = dimV can be bounded by a suitable function from the class Em+3

(Bierstone-G.-Milman-Wlodarczyk (2010)).

Dima Grigoriev (CNRS) Complexity in computer algebra 7.5.13 29 / 39



Complexity of resolution of singularities

To formulate a complexity bound of resolution of singularities briefly
remind the Grzegorczyk’s hierarchy E0 ⊂ E1 ⊂ · · · of the
primitive-recursive functions. Each class Ek is closed under the
composition. E0 contains the functions x 7→ x + const . Class E1

contains the linear functions x 7→ const · x . Class E2 contains all the
polynomials. If functions h(X1, . . . ,Xn), g(Z ,Y ,X1, . . . ,Xn) ∈ Ek then
the function f (Y ,X1, . . . ,Xn) defined by recursion
• f (0,X1, . . . ,Xn) = h(X1, . . . ,Xn);
• f (Y + 1,X1, . . . ,Xn) = g(f (Y ,X1, . . . ,Xn),Y ,X1, . . . ,Xn)
belongs to Ek+1. In particular, E3 contains all the towers of the
exponential function.
The complexity of resolution of singularities of a variety V with
m = dimV can be bounded by a suitable function from the class Em+3

(Bierstone-G.-Milman-Wlodarczyk (2010)).

Dima Grigoriev (CNRS) Complexity in computer algebra 7.5.13 29 / 39



Complexity of resolution of singularities

To formulate a complexity bound of resolution of singularities briefly
remind the Grzegorczyk’s hierarchy E0 ⊂ E1 ⊂ · · · of the
primitive-recursive functions. Each class Ek is closed under the
composition. E0 contains the functions x 7→ x + const . Class E1

contains the linear functions x 7→ const · x . Class E2 contains all the
polynomials. If functions h(X1, . . . ,Xn), g(Z ,Y ,X1, . . . ,Xn) ∈ Ek then
the function f (Y ,X1, . . . ,Xn) defined by recursion
• f (0,X1, . . . ,Xn) = h(X1, . . . ,Xn);
• f (Y + 1,X1, . . . ,Xn) = g(f (Y ,X1, . . . ,Xn),Y ,X1, . . . ,Xn)
belongs to Ek+1. In particular, E3 contains all the towers of the
exponential function.
The complexity of resolution of singularities of a variety V with
m = dimV can be bounded by a suitable function from the class Em+3

(Bierstone-G.-Milman-Wlodarczyk (2010)).

Dima Grigoriev (CNRS) Complexity in computer algebra 7.5.13 29 / 39



Complexity of resolution of singularities

To formulate a complexity bound of resolution of singularities briefly
remind the Grzegorczyk’s hierarchy E0 ⊂ E1 ⊂ · · · of the
primitive-recursive functions. Each class Ek is closed under the
composition. E0 contains the functions x 7→ x + const . Class E1

contains the linear functions x 7→ const · x . Class E2 contains all the
polynomials. If functions h(X1, . . . ,Xn), g(Z ,Y ,X1, . . . ,Xn) ∈ Ek then
the function f (Y ,X1, . . . ,Xn) defined by recursion
• f (0,X1, . . . ,Xn) = h(X1, . . . ,Xn);
• f (Y + 1,X1, . . . ,Xn) = g(f (Y ,X1, . . . ,Xn),Y ,X1, . . . ,Xn)
belongs to Ek+1. In particular, E3 contains all the towers of the
exponential function.
The complexity of resolution of singularities of a variety V with
m = dimV can be bounded by a suitable function from the class Em+3

(Bierstone-G.-Milman-Wlodarczyk (2010)).

Dima Grigoriev (CNRS) Complexity in computer algebra 7.5.13 29 / 39



Complexity of resolution of singularities

To formulate a complexity bound of resolution of singularities briefly
remind the Grzegorczyk’s hierarchy E0 ⊂ E1 ⊂ · · · of the
primitive-recursive functions. Each class Ek is closed under the
composition. E0 contains the functions x 7→ x + const . Class E1

contains the linear functions x 7→ const · x . Class E2 contains all the
polynomials. If functions h(X1, . . . ,Xn), g(Z ,Y ,X1, . . . ,Xn) ∈ Ek then
the function f (Y ,X1, . . . ,Xn) defined by recursion
• f (0,X1, . . . ,Xn) = h(X1, . . . ,Xn);
• f (Y + 1,X1, . . . ,Xn) = g(f (Y ,X1, . . . ,Xn),Y ,X1, . . . ,Xn)
belongs to Ek+1. In particular, E3 contains all the towers of the
exponential function.
The complexity of resolution of singularities of a variety V with
m = dimV can be bounded by a suitable function from the class Em+3

(Bierstone-G.-Milman-Wlodarczyk (2010)).

Dima Grigoriev (CNRS) Complexity in computer algebra 7.5.13 29 / 39



Complexity of resolution of singularities

To formulate a complexity bound of resolution of singularities briefly
remind the Grzegorczyk’s hierarchy E0 ⊂ E1 ⊂ · · · of the
primitive-recursive functions. Each class Ek is closed under the
composition. E0 contains the functions x 7→ x + const . Class E1

contains the linear functions x 7→ const · x . Class E2 contains all the
polynomials. If functions h(X1, . . . ,Xn), g(Z ,Y ,X1, . . . ,Xn) ∈ Ek then
the function f (Y ,X1, . . . ,Xn) defined by recursion
• f (0,X1, . . . ,Xn) = h(X1, . . . ,Xn);
• f (Y + 1,X1, . . . ,Xn) = g(f (Y ,X1, . . . ,Xn),Y ,X1, . . . ,Xn)
belongs to Ek+1. In particular, E3 contains all the towers of the
exponential function.
The complexity of resolution of singularities of a variety V with
m = dimV can be bounded by a suitable function from the class Em+3

(Bierstone-G.-Milman-Wlodarczyk (2010)).

Dima Grigoriev (CNRS) Complexity in computer algebra 7.5.13 29 / 39



Complexity of resolution of singularities

To formulate a complexity bound of resolution of singularities briefly
remind the Grzegorczyk’s hierarchy E0 ⊂ E1 ⊂ · · · of the
primitive-recursive functions. Each class Ek is closed under the
composition. E0 contains the functions x 7→ x + const . Class E1

contains the linear functions x 7→ const · x . Class E2 contains all the
polynomials. If functions h(X1, . . . ,Xn), g(Z ,Y ,X1, . . . ,Xn) ∈ Ek then
the function f (Y ,X1, . . . ,Xn) defined by recursion
• f (0,X1, . . . ,Xn) = h(X1, . . . ,Xn);
• f (Y + 1,X1, . . . ,Xn) = g(f (Y ,X1, . . . ,Xn),Y ,X1, . . . ,Xn)
belongs to Ek+1. In particular, E3 contains all the towers of the
exponential function.
The complexity of resolution of singularities of a variety V with
m = dimV can be bounded by a suitable function from the class Em+3

(Bierstone-G.-Milman-Wlodarczyk (2010)).

Dima Grigoriev (CNRS) Complexity in computer algebra 7.5.13 29 / 39



Complexity of resolution of singularities

To formulate a complexity bound of resolution of singularities briefly
remind the Grzegorczyk’s hierarchy E0 ⊂ E1 ⊂ · · · of the
primitive-recursive functions. Each class Ek is closed under the
composition. E0 contains the functions x 7→ x + const . Class E1

contains the linear functions x 7→ const · x . Class E2 contains all the
polynomials. If functions h(X1, . . . ,Xn), g(Z ,Y ,X1, . . . ,Xn) ∈ Ek then
the function f (Y ,X1, . . . ,Xn) defined by recursion
• f (0,X1, . . . ,Xn) = h(X1, . . . ,Xn);
• f (Y + 1,X1, . . . ,Xn) = g(f (Y ,X1, . . . ,Xn),Y ,X1, . . . ,Xn)
belongs to Ek+1. In particular, E3 contains all the towers of the
exponential function.
The complexity of resolution of singularities of a variety V with
m = dimV can be bounded by a suitable function from the class Em+3

(Bierstone-G.-Milman-Wlodarczyk (2010)).

Dima Grigoriev (CNRS) Complexity in computer algebra 7.5.13 29 / 39



Complexity of resolution of singularities

To formulate a complexity bound of resolution of singularities briefly
remind the Grzegorczyk’s hierarchy E0 ⊂ E1 ⊂ · · · of the
primitive-recursive functions. Each class Ek is closed under the
composition. E0 contains the functions x 7→ x + const . Class E1

contains the linear functions x 7→ const · x . Class E2 contains all the
polynomials. If functions h(X1, . . . ,Xn), g(Z ,Y ,X1, . . . ,Xn) ∈ Ek then
the function f (Y ,X1, . . . ,Xn) defined by recursion
• f (0,X1, . . . ,Xn) = h(X1, . . . ,Xn);
• f (Y + 1,X1, . . . ,Xn) = g(f (Y ,X1, . . . ,Xn),Y ,X1, . . . ,Xn)
belongs to Ek+1. In particular, E3 contains all the towers of the
exponential function.
The complexity of resolution of singularities of a variety V with
m = dimV can be bounded by a suitable function from the class Em+3

(Bierstone-G.-Milman-Wlodarczyk (2010)).

Dima Grigoriev (CNRS) Complexity in computer algebra 7.5.13 29 / 39



Complexity of resolution of singularities

To formulate a complexity bound of resolution of singularities briefly
remind the Grzegorczyk’s hierarchy E0 ⊂ E1 ⊂ · · · of the
primitive-recursive functions. Each class Ek is closed under the
composition. E0 contains the functions x 7→ x + const . Class E1

contains the linear functions x 7→ const · x . Class E2 contains all the
polynomials. If functions h(X1, . . . ,Xn), g(Z ,Y ,X1, . . . ,Xn) ∈ Ek then
the function f (Y ,X1, . . . ,Xn) defined by recursion
• f (0,X1, . . . ,Xn) = h(X1, . . . ,Xn);
• f (Y + 1,X1, . . . ,Xn) = g(f (Y ,X1, . . . ,Xn),Y ,X1, . . . ,Xn)
belongs to Ek+1. In particular, E3 contains all the towers of the
exponential function.
The complexity of resolution of singularities of a variety V with
m = dimV can be bounded by a suitable function from the class Em+3

(Bierstone-G.-Milman-Wlodarczyk (2010)).

Dima Grigoriev (CNRS) Complexity in computer algebra 7.5.13 29 / 39



Complexity in symbolic differential algebra

Manipulating with differential polynomials or differential operators
differs from manipulating with algebraic polynomials. The principal
difference is that unlike the computer algebra, there are no universal
methods for solving equations in the differential algebra. That is why a
single differential equation can be studied for a couple of centuries.
Many quite natural problems in differential algebra are algorithmically
undecidable.
Therefore, one can rarely produce algorithms in differential algebra. I’ll
give two examples of such algorithms. The first one concerns the
quantifier elimination in differentially closed fields. While any algebraic
equation has a solution in an algebraically closed field, any non-linear
differential equation has a solution in a differentially closed field. Thus,
the latter is an uncomprehensible object whose existence is justified by
the axiom of choice.
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Complexity of quantifier elimination in the
first-order theory of differentially closed fields
Consider a formula

∃X11 · · · ∃X1n1∀X21 · · · ∀X2n2 · · · ∃Xa1 · · · ∃XanaQ

where atomic subformulas of the quantifier-free formula Q are of the
type f = 0 for differential polynomials f with respect to m derivatives
∂/∂t1, . . . , ∂/∂tm.
Seidenberg (1956): a quantifier elimination algorithm which yields a
quantifier-free formula equivalent over a differentially closed field. Its
complexity can be estimated by a suitable function from the
Grzegorczyk’s class Em+2.
The proof relies on a similar bound (also established by Seidenberg)
for the Hilbert’s Idealbasissatz: any ascending chain of ideals
I1 ⊂ I2 ⊂ · · · ⊂ F [t1, . . . , tm] eventually stabilizes.
In case of ordinary (m = 1) differentially closed fields G. (1986): a
quantifier elimination with a triple-exponential complexity bound better
than a quadruple-exponential bound in the Seidenberg’s algorithm.
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Complexity of factoring linear ordinary differential
operators

Another algorithm in differential algebra is the one for factoring linear
ordinary differential operators L =

∑
j bj · d j

dt j ∈ C(t)[ d
dt ] with rational

functions coefficients bj ∈ C(t). The factoring problem is to produce
irreducible operators L1, . . . ,Lk ∈ C(t)[ d

dt ] such that L = L1 ◦ · · · ◦ Lk .
The ring C(t)[ d

dt ] of differential operators is not commutative, although
has some common features with the polynomial ring, in particular
admits both left and right divisions with remainder.
Beke-Schlesinger (1895): factoring algorithm with the
triple-exponential complexity. G. (1986): a factoring algorithm with the
double-exponential complexity. Conjecture: the complexity of factoring
is exponential.
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Approximations and complexity
So far, we considered symbolic computations. Another type of data
rather than symbolic, are numeric. Since now we study computations
with approximations, a question arises about a relation between
approximations and complexity. Roughly speaking, the better
approximation one desires to achieve the more time one has to spend.
In this direction the Liouville’s theorem on approximation of algebraic
numbers is known. Namely, if algebraic numbers a 6= b are roots of
polynomials f (a) = g(b) = 0, f ,g ∈ Z[Y ], where deg(f ), deg(g) < n
and the integer coefficients of f , g have absolute values less than M
then |a− b| > M−O(n). Thus, if one wants to approximate a fixed
number a with a sufficiently good rate, one needs to increase the
complexity of b determined by a polynomial g.
Can one extend this phenomenon of the trade-off between
approximations and complexity to solutions of differential, rather than
polynomial equations? It appeared that this holds for two classes of
differential equations, and off these two classes the phenomenon fails.
Denote by exp(n) = exp ◦ · · · ◦ exp the n times iteration of exp.
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Approximations of iterated solutions of linear
ordinary differential equations

To describe the first class of differential equations assume that we
possess a device which allows one to yield a solution u of a linear
ordinary differential equation (

∑
j hj

d j

dt j ) · u = 0. Also arithmetic
operations are admitted in computations.
The main result on the trade-off between the approximations and
complexity (G. (1992)): if functions u(t) 6= v(t) are obtained each by
applications of the device at most of n times then

|u(t)− v(t)| � (exp(n)(tO(1)))−1

where the latter relation � means that the measure of the real points
t ∈ R at which this inequality fails, is finite.
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Approximations of Pfaffian functions
The second class of differential equations for which the trade-off
between approximations and complexity holds, is the Pfaffian
functions. Real functions u1, . . . ,un form a Pfaffian chain if

dui

dt
= pi(t ,u1, . . . ,ui), 1 ≤ i ≤ n

for suitable polynomials pi ∈ R[t ,Y1, . . . ,Yi ]. Each function
ui , 1 ≤ i ≤ n is called Pfaffian and n is called the length of the Pfaffian
chain.
In other words, we suppose that besides the arithmetic operations, we
are in possession of a device which allows one to solve non-linear
ordinary first-order equations. The main result on the trade-off for
Pfaffian functions (G. (1992)): if Pfaffian functions u(t) 6= v(t) are given
each by a Pfaffian chain of the length n then

|u(t)− v(t)| > (exp(n)(tO(1)))−1, t >> 0.
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Frontiers of the trade-off between approximations
and complexity

Thus, informally, if we deal only with (iterations of ) either linear or
first-order differential equations then the trade-off between
approximations and complexity holds. On the other hand, there was
exhibited a family of non-linear second-order ordinary algebraic
differential equations such that its solutions cannot be asymptotically
separated from zero by any function.
Formulated two results concern the asymptotical approximations on
the real line. Similar results were established for the trade-off between
approximations and complexity on a real interval for two classes of
functions being solutions of appropriate non-linear ordinary differential
equations (G. (2001)).
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Complexity of black-box computations
So far, we considered two types of data: symbolic and numeric. Now
we study a type of data intermediate between symbolic and numeric
ones, namely, black-box computations. Assume that a computation
contains a black-box which for a given input outputs the value of an a
priori unknown function f . Then such a computation has the features of
both numeric because the output of the black-box is numeric data, and
on the other hand, the computation can treat the outputs of the
black-box as symbols since the latter are a priori unknown.
The problem of black-box interpolation is to retrieve f . Of course, some
information on f should be available. First, let f be a polynomial in n
variables with s monomials, f is called s-sparse. Emphasize that the
degree of f is a priori unknown, while s is given. Let f be defined over
a field of characteristic zero, then Ben-Or-Tiwari (1987): an algorithm
which retrieves f within polynomial complexity, moreover the algorithm
makes just 2 · s + 1 calls to the black-box. More precisely, herein the
complexity is measured as a function of the size of the output f (a priori
unknown).
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Complexity of black-box interpolation

Let an s-sparse polynomial f be defined over a finite field, then
G.-Karpinski-Singer (1988): an algorithm for its retrieval within
polynomial complexity.
For larger classes of functions when f = g/h is a rational function
where g, h are s-sparse polynomials G.-Karpinski-Singer (1989):
retrieval of f within polynomial complexity. Note that this representation
of a rational function can be reducible, while the irreducible
representation can be non-sparse, as in the example
(xn − 1)/(x − 1) = xn−1 + · · ·+ 1.
Finally, when f (X1, . . . ,Xn) is an algebraic function being s-sparse, i. e.
f satisfies an s-sparse polynomial equation p(X1, . . . ,Xn, f ) = 0, one
can also retrieve f within polynomial complexity (G.-Karpinski-Singer
(1990)).
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Computations vs. tests
It happens sometimes that it is more difficult to compute a function
g(x) at a point x than to test whether for given x , y it holds y = g(x).
Freiwald (1979): a probabilistic test for matrix multiplication. Namely,
given n× n matrices A, B, C to test whether A = B ·C. For a randomly
chosen vector v compute vector w := C · v , then compute vector
u := B · w and compare it with the vector A · v . If u = A · v then the
probabilistic test declares that A = B · C. The algebraic complexity of
this test is O(n2), while the complexity of the matrix multiplication is
supposedly much bigger.
For n-bit integer multiplication the complexity bound
O(n · log n · exp(log∗ n)) is due to Fürer (2007) who has improved the
well known algorithm of Schönhage-Strassen (1971), where log∗ is the
function inverse to the function m 7→ exp(m)(2). (The function
exp(log∗ n) grows very slowly.) G.-Tenenbaum (2009): a probabilistic
test for integer multiplication, so for given integers a, b, c to test
whether a = b · c, within complexity O(n · log log n · exp(log∗ n)).
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