# Cluster algebras and subtraction-free computations <br> (joint work with S. Fomin, G. Koshevoy) 

Dima Grigoriev (Lille)

CNRS
16/04/2014, St.Petersbourg

## Complexity of rational functions with respect to a subset of arithmetic operations

Let $M \subset\{+,-, \times, /\}$. Complexity $C_{M}(f)$ for a rational function $M$ necessary to compute $f$, provided it is finite.

## Complexity of rational functions with respect to a subset of arithmetic operations

Let $M \subset\{+,-, \times, /\}$. Complexity $C_{M}(f)$ for a rational function $f \in \mathbb{Q}\left(X_{1}, \ldots, X_{n}\right)$ is defined as the minimal number of operations from $M$ necessary to compute $f$, provided it is finite.

## Complexity of rational functions with respect to a subset of arithmetic operations

Let $M \subset\{+,-, \times, /\}$. Complexity $C_{M}(f)$ for a rational function $f \in \mathbb{Q}\left(X_{1}, \ldots, X_{n}\right)$ is defined as the minimal number of operations from $M$ necessary to compute $f$, provided it is finite.
Question. For given $M \subset M_{1} \subset\{+,-, \times, /\}$ how big can be $C_{M}(f)$ in comparison with $C_{M_{1}}(f)$ ?

## Complexity of rational functions with respect to a subset of arithmetic operations

Let $M \subset\{+,-, \times, /\}$. Complexity $C_{M}(f)$ for a rational function $f \in \mathbb{Q}\left(X_{1}, \ldots, X_{n}\right)$ is defined as the minimal number of operations from $M$ necessary to compute $f$, provided it is finite.

Question. For given $M \subset M_{1} \subset\{+,-, \times, /\}$ how big can be $C_{M}(f)$ in comparison with $C_{M_{1}}(f)$ ?
This question is non-trivial just for three pairs of $M \subset M_{1}$.

## Complexity of rational functions with respect to a subset of arithmetic operations

Let $M \subset\{+,-, \times, /\}$. Complexity $C_{M}(f)$ for a rational function $f \in \mathbb{Q}\left(X_{1}, \ldots, X_{n}\right)$ is defined as the minimal number of operations from $M$ necessary to compute $f$, provided it is finite.

Question. For given $M \subset M_{1} \subset\{+,-, \times, /\}$ how big can be $C_{M}(f)$ in comparison with $C_{M_{1}}(f)$ ?
This question is non-trivial just for three pairs of $M \subset M_{1}$.
Theorem
$C_{+,-, \times}(f) \leq O\left(C_{+,-, \times, /}(f) \cdot \operatorname{deg}(f)\right)$
for a polynomial $f(V$. Strassen, 1973)

## Complexity of rational functions with respect to a subset of arithmetic operations

Let $M \subset\{+,-, \times, /\}$. Complexity $C_{M}(f)$ for a rational function $f \in \mathbb{Q}\left(X_{1}, \ldots, X_{n}\right)$ is defined as the minimal number of operations from $M$ necessary to compute $f$, provided it is finite.

Question. For given $M \subset M_{1} \subset\{+,-, \times, /\}$ how big can be $C_{M}(f)$ in comparison with $C_{M_{1}}(f)$ ?
This question is non-trivial just for three pairs of $M \subset M_{1}$.
Theorem
$C_{+,-, \times}(f) \leq O\left(C_{+,-, x, / /}(f) \cdot \operatorname{deg}(f)\right)$
for a polynomial $f(V$. Strassen, 1973)

> Corollary
> $C_{+,-, \times}(\operatorname{det}) \leq O\left(n^{4}\right)$.

## Subtraction-free computations



Dima Grigoriev (CNRS)
Subtraction-free computations
16.04.14

## Subtraction-free computations

We show that

- $C_{+, \times}(f)$ can be exponential bigger than $C_{+, \times, /}(f)$;
- $C_{+, \times, /(f)}$ can be exponentially bigger than $C_{+}$

Subtraction-free computations have a meaning in numerical analysis:

## Subtraction-free computations

We show that

- $C_{+, \times}(f)$ can be exponential bigger than $C_{+, \times, /}(f)$;
- $C_{+, \times, /}(f)$ can be exponentially bigger than $C_{+,-, \times, /}(f)$.

Subtraction-free computations have a meaning in numerical analysis: if a computation deals with positive numbers $c$ given with a relative error, i. e. $(1-\epsilon) \cdot b<c<(1+\epsilon) \cdot b$ where $\epsilon$ is a relative error then one can estimate easily relative error after operations +

## Subtraction-free computations

We show that

- $C_{+, \times}(f)$ can be exponential bigger than $C_{+, \times, /}(f)$;
- $C_{+, \times, /}(f)$ can be exponentially bigger than $C_{+,-, \times, /}(f)$.

Subtraction-free computations have a meaning in numerical analysis:

## Subtraction-free computations

We show that

- $C_{+, \times}(f)$ can be exponential bigger than $C_{+, \times, /}(f)$;
- $C_{+, \times, /}(f)$ can be exponentially bigger than $C_{+,-, \times, /}(f)$.

Subtraction-free computations have a meaning in numerical analysis: if a computation deals with positive numbers $c$ given with a relative error, i. e. $(1-\epsilon) \cdot b<c<(1+\epsilon) \cdot b$ where $\epsilon$ is a relative error then one can estimate easily relative error after operations,$+ \times, /$.

## Cluster algebras



## Cluster algebras

Consider $n \times n$ matrix $X=\left(X_{i j}\right)$ with variable entries.

## Cluster algebras

Consider $n \times n$ matrix $X=\left(X_{i j}\right)$ with variable entries. For a set $I \subset\{1, \ldots, n\}$ of size $|I|=k$ denote by $\Delta_{l}$ the determinant of $k \times k$ submatrix of $X$ formed by first $k$ rows and by columns $i \in I$.

## Cluster algebras

Consider $n \times n$ matrix $X=\left(X_{i j}\right)$ with variable entries. For a set $I \subset\{1, \ldots, n\}$ of size $|I|=k$ denote by $\Delta_{l}$ the determinant of $k \times k$ submatrix of $X$ formed by first $k$ rows and by columns $i \in I$. Then the flag algebra $F\left[\left\{\Delta_{l}\right\}_{\}}\right]$is the ring of regular functions on the flag variety.

## Cluster algebras

Consider $n \times n$ matrix $X=\left(X_{i j}\right)$ with variable entries. For a set $I \subset\{1, \ldots, n\}$ of size $|I|=k$ denote by $\Delta_{l}$ the determinant of $k \times k$ submatrix of $X$ formed by first $k$ rows and by columns $i \in I$. Then the flag algebra $F\left[\left\{\Delta_{l}\right\}_{\}}\right]$is the ring of regular functions on the flag variety.

Clusters are special families of flag minors $\Delta_{I}$ (being bases of the flag algebra).

## Cluster algebras

Consider $n \times n$ matrix $X=\left(X_{i j}\right)$ with variable entries. For a set $I \subset\{1, \ldots, n\}$ of size $|I|=k$ denote by $\Delta_{l}$ the determinant of $k \times k$ submatrix of $X$ formed by first $k$ rows and by columns $i \in I$. Then the flag algebra $F\left[\left\{\Delta_{l}\right\},\right]$ is the ring of regular functions on the flag variety.

Clusters are special families of flag minors $\Delta_{I}$ (being bases of the flag algebra). To describe clusters define relation $I \prec J$ for $I, J \subset\{1, \ldots, n\}$ if for any pair $i \in I \backslash J, j \in J \backslash /$ we have $i<j$.

## Cluster algebras

Consider $n \times n$ matrix $X=\left(X_{i j}\right)$ with variable entries. For a set $I \subset\{1, \ldots, n\}$ of size $|I|=k$ denote by $\Delta_{l}$ the determinant of $k \times k$ submatrix of $X$ formed by first $k$ rows and by columns $i \in I$. Then the flag algebra $F\left[\left\{\Delta_{l}\right\},\right]$ is the ring of regular functions on the flag variety.

Clusters are special families of flag minors $\Delta_{I}$ (being bases of the flag algebra). To describe clusters define relation $I \prec J$ for $I, J \subset\{1, \ldots, n\}$ if for any pair $i \in I \backslash J, j \in J \backslash /$ we have $i<j$. We say that $I$, $J$ are strongly separated if either $I \prec J$ or $J \prec I$.

## Cluster algebras

Consider $n \times n$ matrix $X=\left(X_{i j}\right)$ with variable entries. For a set $I \subset\{1, \ldots, n\}$ of size $|I|=k$ denote by $\Delta_{l}$ the determinant of $k \times k$ submatrix of $X$ formed by first $k$ rows and by columns $i \in I$. Then the flag algebra $F\left[\left\{\Delta_{l}\right\},\right]$ is the ring of regular functions on the flag variety.

Clusters are special families of flag minors $\Delta_{I}$ (being bases of the flag algebra). To describe clusters define relation $I \prec J$ for $I, J \subset\{1, \ldots, n\}$ if for any pair $i \in I \backslash J, j \in J \backslash I$ we have $i<j$. We say that $I, J$ are strongly separated if either $I \prec J$ or $J \prec I$. Cluster is a maximal (wrt inclusion) family of pairwise strongly separated flag minors (excluding $I=\{1, \ldots, n\}$ ).

## Cluster algebras

Consider $n \times n$ matrix $X=\left(X_{i j}\right)$ with variable entries. For a set $I \subset\{1, \ldots, n\}$ of size $|I|=k$ denote by $\Delta_{l}$ the determinant of $k \times k$ submatrix of $X$ formed by first $k$ rows and by columns $i \in I$. Then the flag algebra $F\left[\left\{\Delta_{l}\right\},\right]$ is the ring of regular functions on the flag variety.

Clusters are special families of flag minors $\Delta_{I}$ (being bases of the flag algebra). To describe clusters define relation $I \prec J$ for $I, J \subset\{1, \ldots, n\}$ if for any pair $i \in I \backslash J, j \in J \backslash I$ we have $i<j$. We say that $I, J$ are strongly separated if either $I \prec J$ or $J \prec I$. Cluster is a maximal (wrt inclusion) family of pairwise strongly separated flag minors (excluding $I=\{1, \ldots, n\})$. Each cluster contains $n(n+1) / 2-1$ flag minors (Fomin-Zelevinsky).

## Cluster algebras

Consider $n \times n$ matrix $X=\left(X_{i j}\right)$ with variable entries. For a set $I \subset\{1, \ldots, n\}$ of size $|I|=k$ denote by $\Delta_{l}$ the determinant of $k \times k$ submatrix of $X$ formed by first $k$ rows and by columns $i \in I$. Then the flag algebra $F\left[\left\{\Delta_{l}\right\},\right]$ is the ring of regular functions on the flag variety.

Clusters are special families of flag minors $\Delta_{I}$ (being bases of the flag algebra). To describe clusters define relation $I \prec J$ for $I, J \subset\{1, \ldots, n\}$ if for any pair $i \in I \backslash J, j \in J \backslash I$ we have $i<j$. We say that $I, J$ are strongly separated if either $I \prec J$ or $J \prec I$. Cluster is a maximal (wrt inclusion) family of pairwise strongly separated flag minors (excluding $I=\{1, \ldots, n\})$. Each cluster contains $n(n+1) / 2-1$ flag minors (Fomin-Zelevinsky).
Shorthand: for $j \notin I$ denote $l j=: I \cup\{j\}$.

## Cluster graph

## Cluster graph <br> Plücker relations: $\Delta_{l i k} \cdot \Delta_{l j}=\Delta_{l i j} \cdot \Delta_{l k}+\Delta_{l j k} \cdot \Delta_{l i}, i, j, k \notin I_{i} ; i<j<k$

## Cluster graph

Plücker relations: $\Delta_{l i k} \cdot \Delta_{l j}=\Delta_{l i j} \cdot \Delta_{l k}+\Delta_{l j k} \cdot \Delta_{l i}, i, j, k \notin I ; i<j<k$ Clusters form a directed acyclic cluster graph: there is an edge from one cluster to another if they are, respectively, of the types

## Cluster graph

Plücker relations: $\Delta_{l i k} \cdot \Delta_{l j}=\Delta_{l i j} \cdot \Delta_{l k}+\Delta_{l j k} \cdot \Delta_{l i}, i, j, k \notin I_{i} ; i<j<k$ Clusters form a directed acyclic cluster graph: there is an edge from one cluster to another if they are, respectively, of the types $\left\{\Delta_{l i k}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\} ;$ $\left\{\Delta_{l j}, \Delta_{l j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\}$

## Cluster graph

Plücker relations: $\Delta_{l i k} \cdot \Delta_{l j}=\Delta_{l i j} \cdot \Delta_{l k}+\Delta_{l j k} \cdot \Delta_{l i}, i, j, k \notin I ; i<j<k$ Clusters form a directed acyclic cluster graph: there is an edge from one cluster to another if they are, respectively, of the types $\left\{\Delta_{l i k}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\} ;$ $\left\{\Delta_{l j}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\}$
Cluster graph is graded according to the sum of sizes $|I|$.

## Cluster graph

Plücker relations: $\Delta_{l i k} \cdot \Delta_{l j}=\Delta_{l i j} \cdot \Delta_{l k}+\Delta_{l j k} \cdot \Delta_{l i}, i, j, k \notin I ; i<j<k$ Clusters form a directed acyclic cluster graph: there is an edge from one cluster to another if they are, respectively, of the types
$\left\{\Delta_{l i k}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\} ;$
$\left\{\Delta_{l j}, \Delta_{l i}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\}$
Cluster graph is graded according to the sum of sizes $|I|$. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a flip.

## Cluster graph

Plücker relations: $\Delta_{l i k} \cdot \Delta_{l j}=\Delta_{l i j} \cdot \Delta_{l k}+\Delta_{l j k} \cdot \Delta_{l i}, i, j, k \notin I ; i<j<k$ Clusters form a directed acyclic cluster graph: there is an edge from one cluster to another if they are, respectively, of the types
$\left\{\Delta_{l i k}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\} ;$
$\left\{\Delta_{l j}, \Delta_{l i}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\}$
Cluster graph is graded according to the sum of sizes $|I|$. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a flip. Cluster graph has the unique minimal element corresponding to $l$ being all the proper intervals of $\{1, \ldots, n\}$

## Cluster graph

Plücker relations: $\Delta_{l i k} \cdot \Delta_{l j}=\Delta_{l i j} \cdot \Delta_{l k}+\Delta_{l j k} \cdot \Delta_{l i}, i, j, k \notin I ; i<j<k$ Clusters form a directed acyclic cluster graph: there is an edge from one cluster to another if they are, respectively, of the types
$\left\{\Delta_{l i k}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\} ;$
$\left\{\Delta_{l j}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\}$
Cluster graph is graded according to the sum of sizes $|I|$. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a flip. Cluster graph has the unique minimal element corresponding to $/$ being all the proper intervals of $\{1, \ldots, n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.

## Cluster graph

Plücker relations: $\Delta_{l i k} \cdot \Delta_{l j}=\Delta_{l i j} \cdot \Delta_{l k}+\Delta_{l j k} \cdot \Delta_{l i}, i, j, k \notin I_{i} ; i<j<k$ Clusters form a directed acyclic cluster graph: there is an edge from one cluster to another if they are, respectively, of the types
$\left\{\Delta_{l i k}, \Delta_{l j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\} ;$
$\left\{\Delta_{l j}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{I i}, \ldots\right\}$
Cluster graph is graded according to the sum of sizes |/I. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a flip. Cluster graph has the unique minimal element corresponding to / being all the proper intervals of $\{1, \ldots, n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.
Fomin-Zelevinsky: any non-minimal cluster contains a 5 -tuple $\Delta_{l i k}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}$,

## Cluster graph

Plücker relations: $\Delta_{l i k} \cdot \Delta_{l j}=\Delta_{l i j} \cdot \Delta_{l k}+\Delta_{l j k} \cdot \Delta_{l i}, i, j, k \notin I_{i} ; i<j<k$ Clusters form a directed acyclic cluster graph: there is an edge from one cluster to another if they are, respectively, of the types
$\left\{\Delta_{l i k}, \Delta_{l j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\} ;$
$\left\{\Delta_{l j}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j}, \Delta_{l i}, \ldots\right\}$
Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a flip. Cluster graph has the unique minimal element corresponding to / being all the proper intervals of $\{1, \ldots, n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.
Fomin-Zelevinsky: any non-minimal cluster contains a 5 -tuple $\Delta_{l i k}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}$, therefore, a flip can be applied to the cluster.

## Cluster graph

Plücker relations: $\Delta_{l i k} \cdot \Delta_{l j}=\Delta_{l i j} \cdot \Delta_{l k}+\Delta_{l j k} \cdot \Delta_{l i}, i, j, k \notin I_{i} ; i<j<k$ Clusters form a directed acyclic cluster graph: there is an edge from one cluster to another if they are, respectively, of the types
$\left\{\Delta_{l i k}, \Delta_{l j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\} ;$
$\left\{\Delta_{l j}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{I i}, \ldots\right\}$
Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a flip. Cluster graph has the unique minimal element corresponding to / being all the proper intervals of $\{1, \ldots, n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.
Fomin-Zelevinsky: any non-minimal cluster contains a 5 -tuple $\Delta_{l i k}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}$, therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster.

## Cluster graph

Plücker relations: $\Delta_{l i k} \cdot \Delta_{l j}=\Delta_{l i j} \cdot \Delta_{l k}+\Delta_{l j k} \cdot \Delta_{l i}, i, j, k \notin I_{i} ; i<j<k$ Clusters form a directed acyclic cluster graph: there is an edge from one cluster to another if they are, respectively, of the types
$\left\{\Delta_{l i k}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\} ;$
$\left\{\Delta_{I j}, \Delta_{I j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{I j}, \ldots\right\}$
Cluster graph is graded according to the sum of sizes |I|. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a flip. Cluster graph has the unique minimal element corresponding to / being all the proper intervals of $\{1, \ldots, n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.
Fomin-Zelevinsky: any non-minimal cluster contains a 5 -tuple $\Delta_{l i k}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}$, therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster. Thus, any flag minor can be computed with $O\left(n^{3}\right)$ flips starting with the interval flag minors,

## Cluster graph

Plücker relations: $\Delta_{l i k} \cdot \Delta_{l j}=\Delta_{l i j} \cdot \Delta_{l k}+\Delta_{l j k} \cdot \Delta_{l i}, i, j, k \notin I ; i<j<k$ Clusters form a directed acyclic cluster graph: there is an edge from one cluster to another if they are, respectively, of the types
$\left\{\Delta_{l i k}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\} ;$
$\left\{\Delta_{l j}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}, \ldots\right\}$
Cluster graph is graded according to the sum of sizes $|I|$. A birational (with integer positive coefficients) transformation from one cluster to another (along an edge or back) is called a flip. Cluster graph has the unique minimal element corresponding to $/$ being all the proper intervals of $\{1, \ldots, n\}$ and the unique maximal element corresponding to all the complements of the proper intervals.
Fomin-Zelevinsky: any non-minimal cluster contains a 5-tuple $\Delta_{l i k}, \Delta_{l i j}, \Delta_{l k}, \Delta_{l j k}, \Delta_{l i}$, therefore, a flip can be applied to the cluster. Any flag minor belongs to some cluster. Thus, any flag minor can be computed with $O\left(n^{3}\right)$ flips starting with the interval flag minors, and a flag minor is a Laurent polynomial in the interval flag minors with integer positive coefficients.

## Totally positive matrices

As a consequence from cluster transformations we conclude that for a real matrix if all the interval flag minors are positive then all flag minors are positive as well.


## Totally positive matrices

As a consequence from cluster transformations we conclude that for a real matrix if all the interval flag minors are positive then all flag minors are positive as well.

A real matrix is called totally positive if all its minors are positive.

## Totally positive matrices

As a consequence from cluster transformations we conclude that for a real matrix if all the interval flag minors are positive then all flag minors are positive as well.

A real matrix is called totally positive if all its minors are positive. Cluster transformation entail that for total positivity it suffices to verify positivity of minors formed by sets of rows $I$ and of columns $J$ for all pairs of intervals $I, J \subset\{1, \ldots, n\}$.

## Cubic subtraction-free complexity of Schur polynomials

## Cubic subtraction-free complexity of Schur polynomials

Substitute for the entries of the matrix $X_{i j}=x_{i}^{j}$.

## Cubic subtraction-free complexity of Schur polynomials

Substitute for the entries of the matrix $X_{i j}=x_{i}^{j}$. Then $\Delta:=\Delta_{\{1, \ldots, k\}}=\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right)$ is Vandermond determinant.

## Cubic subtraction-free complexity of Schur polynomials

Substitute for the entries of the matrix $X_{i j}=x_{i}^{j}$. Then
$\Delta:=\Delta_{\{1, \ldots, k\}}=\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right)$ is Vandermond determinant. The quotient $S_{I}=\Delta_{I} / \Delta$ is a Schur polynomial

## Cubic subtraction-free complexity of Schur polynomials

Substitute for the entries of the matrix $X_{i j}=x_{i}^{j}$. Then
$\Delta:=\Delta_{\{1, \ldots, k\}}=\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right)$ is Vandermond determinant. The quotient $S_{I}=\Delta_{I} / \Delta$ is a Schur polynomial having integer positive coefficients

## Cubic subtraction-free complexity of Schur polynomials

Substitute for the entries of the matrix $X_{i j}=x_{i}^{j}$. Then
$\Delta:=\Delta_{\{1, \ldots, k\}}=\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right)$ is Vandermond determinant. The quotient $S_{I}=\Delta_{I} / \Delta$ is a Schur polynomial having integer positive coefficients (called Kostka numbers being \#P-hard to compute).

## Cubic subtraction-free complexity of Schur polynomials

Substitute for the entries of the matrix $X_{i j}=x_{i}^{j}$. Then
$\Delta:=\Delta_{\{1, \ldots, k\}}=\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right)$ is Vandermond determinant. The quotient $S_{I}=\Delta_{I} / \Delta$ is a Schur polynomial having integer positive coefficients (called Kostka numbers being \#P-hard to compute).

Since for an interval $I=[i, i+1, \ldots, j]$ the interval Schur polynomial is the monomial $S_{I}=\left(x_{1} \cdots x_{j-i+1}\right)^{i}$ being easy to compute, we get

## Cubic subtraction-free complexity of Schur polynomials

Substitute for the entries of the matrix $X_{i j}=x_{i}^{j}$. Then
$\Delta:=\Delta_{\{1, \ldots, k\}}=\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right)$ is Vandermond determinant. The quotient $S_{I}=\Delta_{I} / \Delta$ is a Schur polynomial having integer positive coefficients (called Kostka numbers being \#P-hard to compute).

Since for an interval $I=[i, i+1, \ldots, j]$ the interval Schur polynomial is the monomial $S_{I}=\left(x_{1} \cdots x_{j-i+1}\right)^{i}$ being easy to compute, we get

## Corollary

Subtraction-free complexity of a Schur polynomial $C_{+, \times, /}\left(S_{l}\right) \leq O\left(n^{3} \cdot \log n\right)$.

## Cubic subtraction-free complexity of Schur polynomials

Substitute for the entries of the matrix $X_{i j}=x_{i}^{j}$. Then
$\Delta:=\Delta_{\{1, \ldots, k\}}=\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right)$ is Vandermond determinant. The quotient $S_{I}=\Delta_{I} / \Delta$ is a Schur polynomial having integer positive coefficients (called Kostka numbers being \#P-hard to compute).

Since for an interval $I=[i, i+1, \ldots, j]$ the interval Schur polynomial is the monomial $S_{I}=\left(x_{1} \cdots x_{j-i+1}\right)^{i}$ being easy to compute, we get

## Corollary

Subtraction-free complexity of a Schur polynomial $C_{+, \times, /}\left(S_{l}\right) \leq O\left(n^{3} \cdot \log n\right)$.

This does not yet imply an exponential gap between $C_{+, \times, /}$and $C_{+, x}$ because we don't know a lower bound on the complexity $C_{+, \times}\left(S_{l}\right)$.

## Cubic subtraction-free complexity of Schur polynomials

Substitute for the entries of the matrix $X_{i j}=x_{i}^{j}$. Then
$\Delta:=\Delta_{\{1, \ldots, k\}}=\prod_{1 \leq i<j \leq k}\left(x_{j}-x_{i}\right)$ is Vandermond determinant. The quotient $S_{I}=\Delta_{I} / \Delta$ is a Schur polynomial having integer positive coefficients (called Kostka numbers being \#P-hard to compute).

Since for an interval $I=[i, i+1, \ldots, j]$ the interval Schur polynomial is the monomial $S_{I}=\left(x_{1} \cdots x_{j-i+1}\right)^{i}$ being easy to compute, we get

## Corollary

Subtraction-free complexity of a Schur polynomial $C_{+, \times, /}\left(S_{l}\right) \leq O\left(n^{3} \cdot \log n\right)$.

This does not yet imply an exponential gap between $C_{+, \times, /}$and $C_{+, \times}$ because we don't know a lower bound on the complexity $C_{+, \times}\left(S_{l}\right)$. To establish this gap we proceed to another class of cluster transformations.

## Star-mesh transformations

 electrical circuit) be endowed with conductances $x_{i, j}$. Denote by $\operatorname{cond}_{i, j}(G)$ the conductance of the circuit between vertices $i, j$.
## Star-mesh transformations

Let edges of a complete graph $G$ with $n$ vertices (viewed as an electrical circuit) be endowed with conductances $x_{i, j}$.

## Star-mesh transformations

Let edges of a complete graph $G$ with $n$ vertices (viewed as an electrical circuit) be endowed with conductances $x_{i, j}$. Denote by $\operatorname{cond}_{i, j}(G)$ the conductance of the circuit between vertices $i, j$.

## Star-mesh transformations

Let edges of a complete graph $G$ with $n$ vertices (viewed as an electrical circuit) be endowed with conductances $x_{i, j}$. Denote by $\operatorname{cond}_{i, j}(G)$ the conductance of the circuit between vertices $i, j$.
For a spanning tree $T$ of $G$ denote by $X^{T}$ the monomial being the product of $x_{i, j}$ for all edges $i, j$ of $T$.

## Star-mesh transformations

Let edges of a complete graph $G$ with $n$ vertices (viewed as an electrical circuit) be endowed with conductances $x_{i, j}$. Denote by $\operatorname{cond}_{i, j}(G)$ the conductance of the circuit between vertices $i, j$.
For a spanning tree $T$ of $G$ denote by $X^{T}$ the monomial being the product of $x_{i, j}$ for all edges $i, j$ of $T$. The generating polynomial $f(G)$ is the sum of the monomials $X^{\top}$ over all spanning trees $T$.

## Star-mesh transformations

Let edges of a complete graph $G$ with $n$ vertices (viewed as an electrical circuit) be endowed with conductances $x_{i, j}$. Denote by $\operatorname{cond}_{i, j}(G)$ the conductance of the circuit between vertices $i, j$.
For a spanning tree $T$ of $G$ denote by $X^{T}$ the monomial being the product of $x_{i, j}$ for all edges $i, j$ of $T$. The generating polynomial $f(G)$ is the sum of the monomials $X^{\top}$ over all spanning trees $T$.
Example: for $G$ with 3 vertices $f(G)=x_{1,2} \cdot x_{2,3}+x_{1,2} \cdot x_{1,3}+x_{2,3} \cdot x_{1,3}$.

## Star-mesh transformations

Let edges of a complete graph $G$ with $n$ vertices (viewed as an electrical circuit) be endowed with conductances $x_{i, j}$. Denote by $\operatorname{cond}_{i, j}(G)$ the conductance of the circuit between vertices $i, j$.
For a spanning tree $T$ of $G$ denote by $X^{T}$ the monomial being the product of $x_{i, j}$ for all edges $i, j$ of $T$. The generating polynomial $f(G)$ is the sum of the monomials $X^{\top}$ over all spanning trees $T$.
Example: for $G$ with 3 vertices $f(G)=x_{1,2} \cdot x_{2,3}+x_{1,2} \cdot x_{1,3}+x_{2,3} \cdot x_{1,3}$. For vertices $v, w$ of $G$ denote by $G_{v, w}$ the graph obtained from $G$ by gluing $v, w$ into a vertex $u$ with new conductances $x_{i, u}:=x_{i, v}+x_{i, w}$.

## Star-mesh transformations

Let edges of a complete graph $G$ with $n$ vertices (viewed as an electrical circuit) be endowed with conductances $x_{i, j}$. Denote by $\operatorname{cond}_{i, j}(G)$ the conductance of the circuit between vertices $i, j$.
For a spanning tree $T$ of $G$ denote by $X^{T}$ the monomial being the product of $x_{i, j}$ for all edges $i, j$ of $T$. The generating polynomial $f(G)$ is the sum of the monomials $X^{\top}$ over all spanning trees $T$.
Example: for $G$ with 3 vertices $f(G)=x_{1,2} \cdot x_{2,3}+x_{1,2} \cdot x_{1,3}+x_{2,3} \cdot x_{1,3}$. For vertices $v, w$ of $G$ denote by $G_{v, w}$ the graph obtained from $G$ by gluing $v, w$ into a vertex $u$ with new conductances $x_{i, u}:=x_{i, v}+x_{i, w}$.
Kirchhoff (1847): $\operatorname{cond}_{i, j}(G)=f(G) / f\left(G_{i, j}\right)$.

## Star-mesh transformations

Let edges of a complete graph $G$ with $n$ vertices (viewed as an electrical circuit) be endowed with conductances $x_{i, j}$. Denote by $\operatorname{cond}_{i, j}(G)$ the conductance of the circuit between vertices $i, j$.
For a spanning tree $T$ of $G$ denote by $X^{T}$ the monomial being the product of $x_{i, j}$ for all edges $i, j$ of $T$. The generating polynomial $f(G)$ is the sum of the monomials $X^{\top}$ over all spanning trees $T$.
Example: for $G$ with 3 vertices $f(G)=x_{1,2} \cdot x_{2,3}+x_{1,2} \cdot x_{1,3}+x_{2,3} \cdot x_{1,3}$. For vertices $v, w$ of $G$ denote by $G_{v, w}$ the graph obtained from $G$ by gluing $v, w$ into a vertex $u$ with new conductances $x_{i, u}:=x_{i, v}+x_{i, w}$.
Kirchhoff (1847): cond $_{i, j}(G)=f(G) / f\left(G_{i, j}\right)$.
Star-mesh transformation: let a vertex $v \neq i, j$ of $G$.

## Star-mesh transformations

Let edges of a complete graph $G$ with $n$ vertices (viewed as an electrical circuit) be endowed with conductances $x_{i, j}$. Denote by $\operatorname{cond}_{i, j}(G)$ the conductance of the circuit between vertices $i, j$.
For a spanning tree $T$ of $G$ denote by $X^{T}$ the monomial being the product of $x_{i, j}$ for all edges $i, j$ of $T$. The generating polynomial $f(G)$ is the sum of the monomials $X^{\top}$ over all spanning trees $T$.
Example: for $G$ with 3 vertices $f(G)=x_{1,2} \cdot x_{2,3}+x_{1,2} \cdot x_{1,3}+x_{2,3} \cdot x_{1,3}$. For vertices $v, w$ of $G$ denote by $G_{v, w}$ the graph obtained from $G$ by gluing $v, w$ into a vertex $u$ with new conductances $x_{i, u}:=x_{i, v}+x_{i, w}$.
Kirchhoff (1847): $\operatorname{cond}_{i, j}(G)=f(G) / f\left(G_{i, j}\right)$.
Star-mesh transformation: let a vertex $v \neq i, j$ of $G$. Denote by $G_{v}$ a graph obtained from $G$ by removing $v$ and replacing each conductance $x_{p, q}$ by $x_{p, q}+x_{p, v} \cdot x_{q, v} \cdot \sum_{k}\left(x_{k, v}\right)^{-1}$.

## Star-mesh transformations

Let edges of a complete graph $G$ with $n$ vertices (viewed as an electrical circuit) be endowed with conductances $x_{i, j}$. Denote by $\operatorname{cond}_{i, j}(G)$ the conductance of the circuit between vertices $i, j$.
For a spanning tree $T$ of $G$ denote by $X^{T}$ the monomial being the product of $x_{i, j}$ for all edges $i, j$ of $T$. The generating polynomial $f(G)$ is the sum of the monomials $X^{\top}$ over all spanning trees $T$.
Example: for $G$ with 3 vertices $f(G)=x_{1,2} \cdot x_{2,3}+x_{1,2} \cdot x_{1,3}+x_{2,3} \cdot x_{1,3}$. For vertices $v, w$ of $G$ denote by $G_{v, w}$ the graph obtained from $G$ by gluing $v, w$ into a vertex $u$ with new conductances $x_{i, u}:=x_{i, v}+x_{i, w}$.
Kirchhoff (1847): $\operatorname{cond}_{i, j}(G)=f(G) / f\left(G_{i, j}\right)$.
Star-mesh transformation: let a vertex $v \neq i, j$ of $G$. Denote by $G_{v}$ a graph obtained from $G$ by removing $v$ and replacing each conductance $x_{p, q}$ by $x_{p, q}+x_{p, v} \cdot x_{q, v} \cdot \sum_{k}\left(x_{k, v}\right)^{-1}$. Then $\operatorname{cond}_{i, j}(G)=\operatorname{cond}_{i, j}\left(G_{v}\right)$.

## Star-mesh transformations

Let edges of a complete graph $G$ with $n$ vertices (viewed as an electrical circuit) be endowed with conductances $x_{i, j}$. Denote by $\operatorname{cond}_{i, j}(G)$ the conductance of the circuit between vertices $i, j$.
For a spanning tree $T$ of $G$ denote by $X^{T}$ the monomial being the product of $x_{i, j}$ for all edges $i, j$ of $T$. The generating polynomial $f(G)$ is the sum of the monomials $X^{\top}$ over all spanning trees $T$.
Example: for $G$ with 3 vertices $f(G)=x_{1,2} \cdot x_{2,3}+x_{1,2} \cdot x_{1,3}+x_{2,3} \cdot x_{1,3}$. For vertices $v, w$ of $G$ denote by $G_{v, w}$ the graph obtained from $G$ by gluing $v, w$ into a vertex $u$ with new conductances $x_{i, u}:=x_{i, v}+x_{i, w}$.
Kirchhoff (1847): cond $_{i, j}(G)=f(G) / f\left(G_{i, j}\right)$.
Star-mesh transformation: let a vertex $v \neq i, j$ of $G$. Denote by $G_{v}$ a graph obtained from $G$ by removing $v$ and replacing each conductance $x_{p, q}$ by $x_{p, q}+x_{p, v} \cdot x_{q, v} \cdot \sum_{k}\left(x_{k, v}\right)^{-1}$. Then $\operatorname{cond}_{i, j}(G)=\operatorname{cond}_{i, j}\left(G_{v}\right)$.

## Corollary

Subtraction-free complexity $C_{+, \times, /}\left(\operatorname{cond}_{i, j}(G), f(G)\right) \leq O\left(n^{3}\right)$.

## Arborescences

```
Now G is a complete graph with n vertices and edges i, j endowed with
two variables }\mp@subsup{x}{i,j}{}\not=\mp@subsup{x}{j,i}{}\mathrm{ . Fix a vertex r of }G\mathrm{ and consider any spanning
tree T of G as having its root at r and all its edges directed towards r
(such directed trees are called arborescences)
```


## Arborescences

Now $G$ is a complete graph with $n$ vertices and edges $i, j$ endowed with two variables $x_{i, j} \neq x_{j, i}$.

## Arborescences

Now $G$ is a complete graph with $n$ vertices and edges $i, j$ endowed with two variables $x_{i, j} \neq x_{j, i}$. Fix a vertex $r$ of $G$ and consider any spanning tree $T$ of $G$ as having its root at $r$ and all its edges directed towards $r$ (such directed trees are called arborescences).

## Arborescences

Now $G$ is a complete graph with $n$ vertices and edges $i, j$ endowed with two variables $x_{i, j} \neq x_{j, i}$. Fix a vertex $r$ of $G$ and consider any spanning tree $T$ of $G$ as having its root at $r$ and all its edges directed towards $r$ (such directed trees are called arborescences). Then the monomial $X^{T}$ corresponding to this tree is the product of all $x_{i, j}$ over all edges $i, j$ of $T$ according to the chosen direction of $T$.

## Arborescences

Now $G$ is a complete graph with $n$ vertices and edges $i, j$ endowed with two variables $x_{i, j} \neq x_{j, i}$. Fix a vertex $r$ of $G$ and consider any spanning tree $T$ of $G$ as having its root at $r$ and all its edges directed towards $r$ (such directed trees are called arborescences). Then the monomial $X^{T}$ corresponding to this tree is the product of all $x_{i, j}$ over all edges $i, j$ of $T$ according to the chosen direction of $T$. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials $X^{T}$.

## Arborescences

Now $G$ is a complete graph with $n$ vertices and edges $i, j$ endowed with two variables $x_{i, j} \neq x_{j, i}$. Fix a vertex $r$ of $G$ and consider any spanning tree $T$ of $G$ as having its root at $r$ and all its edges directed towards $r$ (such directed trees are called arborescences). Then the monomial $X^{T}$ corresponding to this tree is the product of all $x_{i, j}$ over all edges $i, j$ of $T$ according to the chosen direction of $T$. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials $X^{T}$.
Example: if $n=3, r=2$ then $\phi(G)=x_{1,2} \cdot x_{3,2}+x_{1,2} \cdot x_{3,1}+x_{1,3} \cdot x_{3,2}$.

## Arborescences

Now $G$ is a complete graph with $n$ vertices and edges $i, j$ endowed with two variables $x_{i, j} \neq x_{j, i}$. Fix a vertex $r$ of $G$ and consider any spanning tree $T$ of $G$ as having its root at $r$ and all its edges directed towards $r$ (such directed trees are called arborescences). Then the monomial $X^{T}$ corresponding to this tree is the product of all $x_{i, j}$ over all edges $i, j$ of $T$ according to the chosen direction of $T$. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials $X^{T}$.
Example: if $n=3, r=2$ then $\phi(G)=x_{1,2} \cdot x_{3,2}+x_{1,2} \cdot x_{3,1}+x_{1,3} \cdot x_{3,2}$.
Star-mesh transformation: let a vertex $v \neq r$ of $G$.

## Arborescences

Now $G$ is a complete graph with $n$ vertices and edges $i, j$ endowed with two variables $x_{i, j} \neq x_{j, i}$. Fix a vertex $r$ of $G$ and consider any spanning tree $T$ of $G$ as having its root at $r$ and all its edges directed towards $r$ (such directed trees are called arborescences). Then the monomial $X^{T}$ corresponding to this tree is the product of all $x_{i, j}$ over all edges $i, j$ of $T$ according to the chosen direction of $T$. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials $X^{\top}$.
Example: if $n=3, r=2$ then $\phi(G)=x_{1,2} \cdot x_{3,2}+x_{1,2} \cdot x_{3,1}+x_{1,3} \cdot x_{3,2}$.
Star-mesh transformation: let a vertex $v \neq r$ of $G$. Denote by $G_{v}$ a graph obtained from $G$ by removing $v$ and replacing each $x_{p, q}$ by $x_{p, q}+x_{p, v} \cdot x_{v, q} \cdot\left(\sum_{k} x_{v, k}\right)^{-1}$.

## Arborescences

Now $G$ is a complete graph with $n$ vertices and edges $i, j$ endowed with two variables $x_{i, j} \neq x_{j, i}$. Fix a vertex $r$ of $G$ and consider any spanning tree $T$ of $G$ as having its root at $r$ and all its edges directed towards $r$ (such directed trees are called arborescences). Then the monomial $X^{T}$ corresponding to this tree is the product of all $x_{i, j}$ over all edges $i, j$ of $T$ according to the chosen direction of $T$. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials $X^{\top}$.
Example: if $n=3, r=2$ then $\phi(G)=x_{1,2} \cdot x_{3,2}+x_{1,2} \cdot x_{3,1}+x_{1,3} \cdot x_{3,2}$. Star-mesh transformation: let a vertex $v \neq r$ of $G$. Denote by $G_{v}$ a graph obtained from $G$ by removing $v$ and replacing each $x_{p, q}$ by $x_{p, q}+x_{p, v} \cdot x_{v, q} \cdot\left(\sum_{k} x_{v, k}\right)^{-1}$. Then $\phi(G)=\sum_{k} x_{v, k} \cdot \phi\left(G_{v}\right)$.

## Arborescences

Now $G$ is a complete graph with $n$ vertices and edges $i, j$ endowed with two variables $x_{i, j} \neq x_{j, i}$. Fix a vertex $r$ of $G$ and consider any spanning tree $T$ of $G$ as having its root at $r$ and all its edges directed towards $r$ (such directed trees are called arborescences). Then the monomial $X^{T}$ corresponding to this tree is the product of all $x_{i, j}$ over all edges $i, j$ of $T$ according to the chosen direction of $T$. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials $X^{\top}$.
Example: if $n=3, r=2$ then $\phi(G)=x_{1,2} \cdot x_{3,2}+x_{1,2} \cdot x_{3,1}+x_{1,3} \cdot x_{3,2}$.
Star-mesh transformation: let a vertex $v \neq r$ of $G$. Denote by $G_{v}$ a graph obtained from $G$ by removing $v$ and replacing each $x_{p, q}$ by $x_{p, q}+x_{p, v} \cdot x_{v, q} \cdot\left(\sum_{k} x_{v, k}\right)^{-1}$. Then $\phi(G)=\sum_{k} x_{v, k} \cdot \phi\left(G_{v}\right)$.

## Corollary

$C_{+, x, /(\phi(G))} \leq O\left(n^{3}\right)$.

## Arborescences

Now $G$ is a complete graph with $n$ vertices and edges $i, j$ endowed with two variables $x_{i, j} \neq x_{j, i}$. Fix a vertex $r$ of $G$ and consider any spanning tree $T$ of $G$ as having its root at $r$ and all its edges directed towards $r$ (such directed trees are called arborescences). Then the monomial $X^{\top}$ corresponding to this tree is the product of all $x_{i, j}$ over all edges $i, j$ of $T$ according to the chosen direction of $T$. The generating polynomial $\phi(G)$ of arborescences is the sum of all the monomials $X^{\top}$.
Example: if $n=3, r=2$ then $\phi(G)=x_{1,2} \cdot x_{3,2}+x_{1,2} \cdot x_{3,1}+x_{1,3} \cdot x_{3,2}$.
Star-mesh transformation: let a vertex $v \neq r$ of $G$. Denote by $G_{v}$ a graph obtained from $G$ by removing $v$ and replacing each $x_{p, q}$ by $x_{p, q}+x_{p, v} \cdot x_{v, q} \cdot\left(\sum_{k} x_{v, k}\right)^{-1}$. Then $\phi(G)=\sum_{k} x_{v, k} \cdot \phi\left(G_{v}\right)$.

## Corollary

$C_{+, x, /(\phi(G))} \leq O\left(n^{3}\right)$.
Schnorr-Valiant-Jerrum-Snir: $C_{+, \times}(\phi(G)) \geq c^{n}$ for some $c>1$.

## Subtraction can be exponentially powerful

 the positive orthant $\mathbb{R}_{>0}^{n}$ can be represented as a fraction $P /\left(1+x_{1}+\cdots+x_{n}\right)^{N}$ for suitable integer $N$ and a polynomial $P$ with positive coefficients.
## Subtraction can be exponentially powerful

Polya (1923): any polynomial $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ positive everywhere on the positive orthant $\mathbb{R}_{>0}^{n}$

## Subtraction can be exponentially powerful

Polya (1923): any polynomial $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ positive everywhere on the positive orthant $\mathbb{R}_{>0}^{n}$ can be represented as a fraction $P /\left(1+x_{1}+\cdots+x_{n}\right)^{N}$ for suitable integer $N$ and a polynomial $P$ with positive coefficients.

## Subtraction can be exponentially powerful

Polya (1923): any polynomial $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ positive everywhere on the positive orthant $\mathbb{R}_{>0}^{n}$ can be represented as a fraction
$P /\left(1+x_{1}+\cdots+x_{n}\right)^{N}$ for suitable integer $N$ and a polynomial $P$ with positive coefficients.
Example: $x^{2}-x+1=\left(x^{3}+1\right) /(x+1)$.

## Subtraction can be exponentially powerful

Polya (1923): any polynomial $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ positive everywhere on the positive orthant $\mathbb{R}_{>0}^{n}$ can be represented as a fraction $P /\left(1+x_{1}+\cdots+x_{n}\right)^{N}$ for suitable integer $N$ and a polynomial $P$ with positive coefficients.
Example: $x^{2}-x+1=\left(x^{3}+1\right) /(x+1)$.

## Corollary

For a polynomial $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ its complexity $C_{+, x, /}(h)$ is finite iff $h$ is positive everywhere on $\mathbb{R}_{>0}^{n}$.

## Subtraction can be exponentially powerful

Polya (1923): any polynomial $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ positive everywhere on the positive orthant $\mathbb{R}_{>0}^{n}$ can be represented as a fraction $P /\left(1+x_{1}+\cdots+x_{n}\right)^{N}$ for suitable integer $N$ and a polynomial $P$ with positive coefficients.
Example: $x^{2}-x+1=\left(x^{3}+1\right) /(x+1)$.

## Corollary

For a polynomial $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ its complexity $C_{+, x, /}(h)$ is finite iff $h$ is positive everywhere on $\mathbb{R}_{>0}^{n}$.

## Lemma

For any representation $g_{n}:=\left(1-x_{1}\right)^{2}+\left(x_{1}-2 x_{2}\right)^{2}+\left(x_{2}^{2}-x_{3}\right)^{2}+$ $\left(x_{3}^{2}-x_{4}\right)^{2}+\cdots+\left(x_{n-1}^{2}-x_{n}\right)^{2}+4 x_{n}^{2} \cdot x_{1}=P / Q$ with $P, Q$ being polynomials with positive coefficients we have $\operatorname{deg}(Q)>2^{2^{n}}$.

## Subtraction can be exponentially powerful

Polya (1923): any polynomial $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ positive everywhere on the positive orthant $\mathbb{R}_{>0}^{n}$ can be represented as a fraction $P /\left(1+x_{1}+\cdots+x_{n}\right)^{N}$ for suitable integer $N$ and a polynomial $P$ with positive coefficients.
Example: $x^{2}-x+1=\left(x^{3}+1\right) /(x+1)$.

## Corollary

For a polynomial $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ its complexity $C_{+, x, /}(h)$ is finite iff $h$ is positive everywhere on $\mathbb{R}_{>0}^{n}$.

## Lemma

For any representation $g_{n}:=\left(1-x_{1}\right)^{2}+\left(x_{1}-2 x_{2}\right)^{2}+\left(x_{2}^{2}-x_{3}\right)^{2}+$ $\left(x_{3}^{2}-x_{4}\right)^{2}+\cdots+\left(x_{n-1}^{2}-x_{n}\right)^{2}+4 x_{n}^{2} \cdot x_{1}=P / Q$ with $P, Q$ being polynomials with positive coefficients we have $\operatorname{deg}(Q)>2^{2^{n}}$.

## Corollary

$C_{+, x, /}\left(g_{n}\right)>2^{n}$

## Subtraction can be exponentially powerful

Polya (1923): any polynomial $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ positive everywhere on the positive orthant $\mathbb{R}_{>0}^{n}$ can be represented as a fraction $P /\left(1+x_{1}+\cdots+x_{n}\right)^{N}$ for suitable integer $N$ and a polynomial $P$ with positive coefficients.
Example: $x^{2}-x+1=\left(x^{3}+1\right) /(x+1)$.

## Corollary

For a polynomial $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ its complexity $C_{+, x, /( }(h)$ is finite iff $h$ is positive everywhere on $\mathbb{R}_{>0}^{n}$.

## Lemma

For any representation $g_{n}:=\left(1-x_{1}\right)^{2}+\left(x_{1}-2 x_{2}\right)^{2}+\left(x_{2}^{2}-x_{3}\right)^{2}+$ $\left(x_{3}^{2}-x_{4}\right)^{2}+\cdots+\left(x_{n-1}^{2}-x_{n}\right)^{2}+4 x_{n}^{2} \cdot x_{1}=P / Q$ with $P, Q$ being polynomials with positive coefficients we have $\operatorname{deg}(Q)>2^{2^{n}}$.

## Corollary

$C_{+, x, /}\left(g_{n}\right)>2^{n} \quad$ (evidently, $\left.C_{+,-, x, /}\left(g_{n}\right)<O(n)\right)$.

