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Stratifications
Stratification of an (algebraic) variety V = tiSi ⊂ Cn is a
decomposition where strata Si ∩ Sj = ∅. Usually, some extra properties
are imposed on strata Si , e. g. each Si to be smooth, irreducible, open
in its closure, in addition to satisfy Whitney or Thom conditions. Thus,
we fix a class of stratifications satisfying certain conditions.

Relation of coarseness of stratifications
We say that stratification V = tiSi is coarser than stratification
V = tjRj if for every i there exists j such that Si ∩ Rj is dense in both
Si and in Rj . Informally, stratification {Si}i is coarser than {Rj}j when
each stratum Si = tlRjl for a suitable subfamily {Rjl}l . Among strata
{Rjl}l there is a unique stratum dense in Si .

Stratification {Si}i is universal in a fixed class of stratifications if it is
the coarsest in this class.
If a universal stratification V = tiSi of V does exist then it is natural to
define an intrinsic complexity of V in terms of {Si}i , say as

∑
i deg(Si).
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Whitney condition on stratifications
Stratification {Si}i fulfils Whitney-(a) condition if for any sequence of
points {xk}k ⊂ Si with existing limits limk xk = x ∈ Sj and of tangent
spaces T = limk Txk (Si) we have T ⊃ Tx(Sj).

Theorem (Whitney 1965). Any variety admits a stratification satisfying
Whitney-(a) condition.

Thom condition on stratifications
Let f : Cn → C be a polynomial f ∈ Z[X1, . . . ,Xn] with 0 being a critical
value. A stratification of the set of critical points
Crit(f ) := {x ∈ Cn : f (x) = ∂f

∂X1
(x) = · · · = ∂f

∂Xn
(x) = 0} = tiSi fulfils

Thom condition if for any sequence {xk}k ⊂ Cn with the limits
limk xk = x ∈ Si and limk gradxk

(f ) = w , we have w⊥Tx(Si).

Theorem (Hironaka 1976). For any polynomial f there exists a
stratification with Thom condition of Crit(f ).
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Gauss map
Gauss map on a constructible set S ⊂ Cn sends each non-singular
point x ∈ S to the tangent space Tx(S). If Gauss map can be extended
continuously on the whole S then S is called Gauss regular. If a
continuous extension does exist it is unique.

If S is smooth it is Gauss regular. The inverse is not true: the plane
curve (cusp) x2 = y3 is Gauss regular, but not smooth at point (0,0).

Thus, we consider a class of stratifications of Crit(f ) = tiSi with Si
being Gauss regular and satisfying Whitney-(a) and Thom conditions.

Question: when Crit(f ) admits a universal stratification?

Dima Grigoriev (CNRS) Universal stratifications 6.5.13 4 / 12



Gauss map
Gauss map on a constructible set S ⊂ Cn sends each non-singular
point x ∈ S to the tangent space Tx(S). If Gauss map can be extended
continuously on the whole S then S is called Gauss regular. If a
continuous extension does exist it is unique.

If S is smooth it is Gauss regular. The inverse is not true: the plane
curve (cusp) x2 = y3 is Gauss regular, but not smooth at point (0,0).

Thus, we consider a class of stratifications of Crit(f ) = tiSi with Si
being Gauss regular and satisfying Whitney-(a) and Thom conditions.

Question: when Crit(f ) admits a universal stratification?

Dima Grigoriev (CNRS) Universal stratifications 6.5.13 4 / 12



Gauss map
Gauss map on a constructible set S ⊂ Cn sends each non-singular
point x ∈ S to the tangent space Tx(S). If Gauss map can be extended
continuously on the whole S then S is called Gauss regular. If a
continuous extension does exist it is unique.

If S is smooth it is Gauss regular. The inverse is not true: the plane
curve (cusp) x2 = y3 is Gauss regular, but not smooth at point (0,0).

Thus, we consider a class of stratifications of Crit(f ) = tiSi with Si
being Gauss regular and satisfying Whitney-(a) and Thom conditions.

Question: when Crit(f ) admits a universal stratification?

Dima Grigoriev (CNRS) Universal stratifications 6.5.13 4 / 12



Gauss map
Gauss map on a constructible set S ⊂ Cn sends each non-singular
point x ∈ S to the tangent space Tx(S). If Gauss map can be extended
continuously on the whole S then S is called Gauss regular. If a
continuous extension does exist it is unique.

If S is smooth it is Gauss regular. The inverse is not true: the plane
curve (cusp) x2 = y3 is Gauss regular, but not smooth at point (0,0).

Thus, we consider a class of stratifications of Crit(f ) = tiSi with Si
being Gauss regular and satisfying Whitney-(a) and Thom conditions.

Question: when Crit(f ) admits a universal stratification?

Dima Grigoriev (CNRS) Universal stratifications 6.5.13 4 / 12



Gauss map
Gauss map on a constructible set S ⊂ Cn sends each non-singular
point x ∈ S to the tangent space Tx(S). If Gauss map can be extended
continuously on the whole S then S is called Gauss regular. If a
continuous extension does exist it is unique.

If S is smooth it is Gauss regular. The inverse is not true: the plane
curve (cusp) x2 = y3 is Gauss regular, but not smooth at point (0,0).

Thus, we consider a class of stratifications of Crit(f ) = tiSi with Si
being Gauss regular and satisfying Whitney-(a) and Thom conditions.

Question: when Crit(f ) admits a universal stratification?

Dima Grigoriev (CNRS) Universal stratifications 6.5.13 4 / 12



Gauss map
Gauss map on a constructible set S ⊂ Cn sends each non-singular
point x ∈ S to the tangent space Tx(S). If Gauss map can be extended
continuously on the whole S then S is called Gauss regular. If a
continuous extension does exist it is unique.

If S is smooth it is Gauss regular. The inverse is not true: the plane
curve (cusp) x2 = y3 is Gauss regular, but not smooth at point (0,0).

Thus, we consider a class of stratifications of Crit(f ) = tiSi with Si
being Gauss regular and satisfying Whitney-(a) and Thom conditions.

Question: when Crit(f ) admits a universal stratification?

Dima Grigoriev (CNRS) Universal stratifications 6.5.13 4 / 12



Gauss map
Gauss map on a constructible set S ⊂ Cn sends each non-singular
point x ∈ S to the tangent space Tx(S). If Gauss map can be extended
continuously on the whole S then S is called Gauss regular. If a
continuous extension does exist it is unique.

If S is smooth it is Gauss regular. The inverse is not true: the plane
curve (cusp) x2 = y3 is Gauss regular, but not smooth at point (0,0).

Thus, we consider a class of stratifications of Crit(f ) = tiSi with Si
being Gauss regular and satisfying Whitney-(a) and Thom conditions.

Question: when Crit(f ) admits a universal stratification?

Dima Grigoriev (CNRS) Universal stratifications 6.5.13 4 / 12



Glaeser closure of a bundle of vector spaces

Let Q ⊂ V ×W where W be a vector space. Consider a bundle of
vector spaces Q(1) ⊂ V ×W whose each fiber Q(1)

v is the linear hull of
the fiber Qv = {w : (v ,w) ∈ Q} of the closure Q (in Zariski topology).
Perhaps, Q(1) is not close. Applying this construction to Q(1) we get a
bundle of linear spaces Q(2) ⊂ V ×W .

Continuing we get an increasing chain of bundles
Q ⊂ Q(1) ⊂ Q(2) ⊂ · · · ⊂ V ×W . This chain stabilizes after at latest of
r = 2 · dimW iterations, Q(r) = Q(r+1) = · · · . The resulting closed
bundle of vector spaces Gl(Q) = Q(r) is called the Glaeser closure of
Q.

Apply this construction to the set Q = {(x , λ · gradx(f ))}λ∈C ⊂ C2n. As
a result we obtain a closed bundle of vector spaces
Gf = Gl(Q)|Crit(f )×Cn ⊂ Crit(f )× Cn.
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Perhaps, Q(1) is not close. Applying this construction to Q(1) we get a
bundle of linear spaces Q(2) ⊂ V ×W .

Continuing we get an increasing chain of bundles
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r = 2 · dimW iterations, Q(r) = Q(r+1) = · · · . The resulting closed
bundle of vector spaces Gl(Q) = Q(r) is called the Glaeser closure of
Q.
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Dual bundle of vector spaces for a stratification
For a stratification Crit(f ) = tiSi with Gauss regular strata Si define a
dual bundle of vector spaces B({Si}i) ⊂ Crit(f )× Cn such that for any
point x ∈ Si the fiber (B({Si}i))x = {w ∈ Cn : (x ,w) ∈ B({Si}i)} of
B({Si}i) at x ∈ Sj equals the orthogonal complement (Tx(Sj))

⊥.

Lemma
• Stratification {Si}i satisfies Thom condition iff the dual bundle
B({Si}i) ⊃ Gf .
• Stratification {Si}i satisfies Whitney-(a) condition iff B({Si}i) is
closed.

Lemma
Stratification {Si}i is coarser than stratification {Rj}j iff
B({Si}i) ⊂ B({Rj}j).

Thus, the question on existence of a universal stratification is
equivalent in the language of dual bundles of vector spaces to whether
among the dual bundles containing bundle Gf , there is the minimal one
(so, contained in any such dual bundle).Dima Grigoriev (CNRS) Universal stratifications 6.5.13 6 / 12
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Lagrangian bundles
For a stratification Crit(f ) = tiSi a dual bundle B({Si}i) ⊂ Crit(f )× Cn

was constructed above. Conversely, with a closed bundle of vector
spaces B ⊂ V × Cn we associate quasistrata

Bk := {x ∈ V : dim({w : (x ,w) ∈ B}) = k}, 0 ≤ k ≤ n.

We call B Lagrangian if for any Gauss regular point x ∈ Bk fiber
{w : (x ,w) ∈ B} is the orthogonal complement of the tangent space
Tx(Bk ).

Theorem
• If bundle G := Gf is Lagrangian then there exists a universal
stratification of Crit(f ) satisfying Whitney-(a) and Thom conditions.
• The universal stratification is provided by the irreducible components
of the quasistrata (in this case, strata) Gk , 0 ≤ k ≤ n.
• The dual bundle of the stratification Crit(f ) = tkGk coincides with G.
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Existence of universal stratifications in terms of
Lagrangian bundles

Converse also holds

Theorem
If Crit(f ) admits a universal stratification then bundle Gf is Lagrangian.

Conjecture. Dimension of every irreducible component of Gf equals n.

If the conjecture was true one could treat Gf ⊂ C2n as a nonsmooth
analogue of a Lagrangian manifold.
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Complexity issues

Let a polynomial f ∈ Z[X1, . . . ,Xn], deg(f ) ≤ d and the bit-sizes of the
coefficients of f do not exceed M. The complexity of constructing (and
thereby, the size of) bundle Gf and the quasistrata Gk , 0 ≤ k ≤ n can
be bounded by a polynomial in M,d2O(n)

(so, double-exponential). The
reason is that each iteration in the construction of the Glaeser closure
increases the complexity by a polynomial, and there could be at most
2n iterations.

Question. Is it a sharp bound or can one improve it to a single
exponential?
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Examples

Stratification of quadratic forms
Let f =

∑
1≤i≤j≤n Ai,j · Xi · Xj ∈ Z[{Ai,j}, {Xi}] be a generic quadratic

form, so polynomial in n(n + 3)/2 variables.

Then Crit(f ) = {{ai,j}, {0}}.

The Glaeser closure is constructed in a single iteration. Bundle Gf is
Lagrangian.

Thus, the quasistrata (thereby, strata)
Gk(q) = {({ai,j}, {0}) : rk(ai,j) = q} where
k(q) = n + (n − q) · (n − q + 1)/2, constitute a universal stratification.
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A variety without a universal stratification
We give an example of a polynomial
f = A · X 2 + 2 · B2 · X · Y + C · Y 2 ∈ Z[A, B, C, X , Y ] for which Crit(f )
does not admit a universal stratification. Crit(f ) = {x = y = 0} ⊂ C5 is
a 3-dimensional linear space. Its quasistrata are
• G2 = {x = y = 0, a · c − b4 6= 0};
• G3 = {x = y = 0, a · c − b4 = 0, (a, c) 6= 0};
• G4 = {0}.
Quasistrata G2, G3 are Lagrangian, while G4 is not Lagrangian (since
dimG4 = 0 < 5− 4).
To illustrate this example note that Crit(f ) = G2 t G3 t G4 is a
stratification with smooth strata, satisfying Whitney-(a) and Thom
conditions.
Consider a (rational) curve K := {x = y = 0, a = c = t2, b = t}t∈C.
Then Crit(f ) = G2 t (G3 \ K ) t K
provides another stratification of Crit(f ) which is neither coarser nor
finer than the stratification Crit(f ) = G2 t G3 t G4. There is no
stratification of Crit(f ) being coarser than both ones.
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To illustrate this example note that Crit(f ) = G2 t G3 t G4 is a
stratification with smooth strata, satisfying Whitney-(a) and Thom
conditions.
Consider a (rational) curve K := {x = y = 0, a = c = t2, b = t}t∈C.
Then Crit(f ) = G2 t (G3 \ K ) t K
provides another stratification of Crit(f ) which is neither coarser nor
finer than the stratification Crit(f ) = G2 t G3 t G4. There is no
stratification of Crit(f ) being coarser than both ones.

Dima Grigoriev (CNRS) Universal stratifications 6.5.13 11 / 12



A variety without a universal stratification
We give an example of a polynomial
f = A · X 2 + 2 · B2 · X · Y + C · Y 2 ∈ Z[A, B, C, X , Y ] for which Crit(f )
does not admit a universal stratification. Crit(f ) = {x = y = 0} ⊂ C5 is
a 3-dimensional linear space. Its quasistrata are
• G2 = {x = y = 0, a · c − b4 6= 0};
• G3 = {x = y = 0, a · c − b4 = 0, (a, c) 6= 0};
• G4 = {0}.
Quasistrata G2, G3 are Lagrangian, while G4 is not Lagrangian (since
dimG4 = 0 < 5− 4).
To illustrate this example note that Crit(f ) = G2 t G3 t G4 is a
stratification with smooth strata, satisfying Whitney-(a) and Thom
conditions.
Consider a (rational) curve K := {x = y = 0, a = c = t2, b = t}t∈C.
Then Crit(f ) = G2 t (G3 \ K ) t K
provides another stratification of Crit(f ) which is neither coarser nor
finer than the stratification Crit(f ) = G2 t G3 t G4. There is no
stratification of Crit(f ) being coarser than both ones.

Dima Grigoriev (CNRS) Universal stratifications 6.5.13 11 / 12



A variety without a universal stratification
We give an example of a polynomial
f = A · X 2 + 2 · B2 · X · Y + C · Y 2 ∈ Z[A, B, C, X , Y ] for which Crit(f )
does not admit a universal stratification. Crit(f ) = {x = y = 0} ⊂ C5 is
a 3-dimensional linear space. Its quasistrata are
• G2 = {x = y = 0, a · c − b4 6= 0};
• G3 = {x = y = 0, a · c − b4 = 0, (a, c) 6= 0};
• G4 = {0}.
Quasistrata G2, G3 are Lagrangian, while G4 is not Lagrangian (since
dimG4 = 0 < 5− 4).
To illustrate this example note that Crit(f ) = G2 t G3 t G4 is a
stratification with smooth strata, satisfying Whitney-(a) and Thom
conditions.
Consider a (rational) curve K := {x = y = 0, a = c = t2, b = t}t∈C.
Then Crit(f ) = G2 t (G3 \ K ) t K
provides another stratification of Crit(f ) which is neither coarser nor
finer than the stratification Crit(f ) = G2 t G3 t G4. There is no
stratification of Crit(f ) being coarser than both ones.

Dima Grigoriev (CNRS) Universal stratifications 6.5.13 11 / 12



A variety without a universal stratification
We give an example of a polynomial
f = A · X 2 + 2 · B2 · X · Y + C · Y 2 ∈ Z[A, B, C, X , Y ] for which Crit(f )
does not admit a universal stratification. Crit(f ) = {x = y = 0} ⊂ C5 is
a 3-dimensional linear space. Its quasistrata are
• G2 = {x = y = 0, a · c − b4 6= 0};
• G3 = {x = y = 0, a · c − b4 = 0, (a, c) 6= 0};
• G4 = {0}.
Quasistrata G2, G3 are Lagrangian, while G4 is not Lagrangian (since
dimG4 = 0 < 5− 4).
To illustrate this example note that Crit(f ) = G2 t G3 t G4 is a
stratification with smooth strata, satisfying Whitney-(a) and Thom
conditions.
Consider a (rational) curve K := {x = y = 0, a = c = t2, b = t}t∈C.
Then Crit(f ) = G2 t (G3 \ K ) t K
provides another stratification of Crit(f ) which is neither coarser nor
finer than the stratification Crit(f ) = G2 t G3 t G4. There is no
stratification of Crit(f ) being coarser than both ones.

Dima Grigoriev (CNRS) Universal stratifications 6.5.13 11 / 12



Example with non Gauss regular quasistrata
In the previous two examples the quasistrata were smooth. Now we
give an example of a polynomial with non Gauss regular (thereby,
non-smooth) quasistrata.

Let g ∈ C[X1, . . . ,Xn] be an arbitrary polynomial. Consider
f := A · X 2 + 2 · g2 · X · Y + C · Y 2 ∈ C[A, C, X , Y , X1 . . . ,Xn]. Then
Gf = G2 t G3 t G4 has 3 quasistrata
• G2 = {x = y = 0,a · c − g4 6= 0};
• G3 = {x = y = 0, a · c − g4 = 0, (a, c) 6= 0};
• G4 = {x = y = a = c = g = 0}.
Quasistratum G4 is not Lagrangian, moreover it could be an arbitrary
hypersurface, in particular, not Gauss regular.

This contradicts to an original conjecture (which initiated the whole
study) that quasistrata should be always smooth.
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