

INSTITUTE FOR NANOTECHNOLOGY

Josephson supercurrent through a topological insulator surface state

Nb/Bi₂Te₃/Nb junctions

A.A. Golubov University of Twente, The Netherlands

Acknowledgements

MESA+ Institute for Nanotechnology, University of Twente, The Netherlands

M.Veldhorst

M. Snelder

- M.Hoek
- T. Gang
- W. v.d. Wiel
- H. Hilgenkamp (also from Leiden University, The Netherlands)
- A. Brinkman

High Field Magnet Laboratory, Nijmegen, The Netherlands

U. Zeitler V. K. Guduru

University of Wollongong, Australia

X. L. Wang

Motivation

TI surface states

S-wave Superconductor

Motivation

P-wave Superconductor

Natural place to look for Majorana fermions (single zero-energy modes)

Motivation

Essential: supercurrent must couple to surface states Characterize junction

Content

- Part 1 Bi₂Te₃
- Part 2 S/TI/S junctions
- Part 3 Josephson supercurrent through the surface states

Content

Part 1 Bi₂Te₃

Part 2 S/TI/S junctions

Part 3 Josephson supercurrent through the surface states

Bi₂Te₃

Fabrication

Mechanical cleavage Photolithography contacts

Hall measurements

Shubnikov-de-Haas oscillations

Right graph: Oscillations from 2D channel

Shubnikov-de-Haas oscillations

Left graph: Dingle temperature 1.65 K, μ =8300 cm²/Vs Right graph: Effective mass 0.16m₀

Shubnikov-de-Haas oscillations

I.M. Lifshitz and A.M. Kosevich, Sov. Phys. JETP 2, 636 (1956)

$$\delta \rho_{xx} \sim \cos\left(\frac{2\pi E_f}{\hbar \omega_c} + \pi + \varphi_B\right)$$

E

Extrapolating till 1/B=0 → nth minima in resistivity is zero at 1/B=0 in 'normal case' (Berry phase=0)

Conductivity is the response function

$$\rho_{xx} = \frac{\sigma_{xx}}{\sigma_{xx}^2 + \sigma_{xy}^2}$$

I.M. Lifshitz and A.M. Kosevich formalism applies if:

 $rac{\delta \sigma_{xx}}{\langle \sigma_{xx} \rangle} \ll 1 \text{ or } rac{\sigma_{xy}}{\sigma_{xx}} \gg 1 \;$;Former is 0.01, later is 10 Then $\delta \rho_{xx} \sim \delta \sigma_{xx}$ So in normal case nth minima=0 through 1/B=0

Content

Part 1 Bi₂Te₃

Part 2 S/TI/S junctions

Part 3 Josephson supercurrent through the surface states

S/TI/S junctions

50 100 150 200 250 300 nm Junction lengths

Josephson supercurrent

Hallmarks for a Josephson junction:

- 1) Shapiro steps
- 2) Modulation I_c versus B-field

First hallmark – Shapiro steps

First hallmark – Shapiro steps

Fitting Shapiro steps with Bessel functions

Only can be done if $I_c R_n$ product is larger than the position of the steps (20.7 μ V in these measurements)

M. Veldhorst, C. G. Molenaar et al. Appl. Phys. Lett. 100, 072602 (2012)

Second hallmark – I_c-B modulation

Second hallmark – I_c-B modulation

Area uncertain:

- Penetration depth
- Flux focussing
 Sinc function only valid
 for large L and W ratio

Content

Part 1 Bi₂Te₃

Part 2 S/TI/S junctions

Part 3 Josephson supercurrent through the surface states

Link supercurrent and surface states

We have junctions between 50 and 250 nm and:

 I_{mfp} =22 nm (bulk states) \rightarrow diffusive transport I_{mfp} =105 nm (surface states) \rightarrow ballistic transport

Link supercurrent and surface states

Josephson supercurrent has been realized through the surface states of Bi₂Te₃

Provides prospects for Majorana devices.....but

What is the best topological insulator for this purpose? (stability, insulating in the bulk, Dirac cone in the gap) What is the smoking gun experiment with 3D topological insulators to observe Majorana fermions?