Superconductivity from repulsion in LiFeAs: novel s-wave symmetry and time-reversal symmetry breaking

Ilya Eremin

Theoretische Physik III, Ruhr-Universität Bochum

Work done in collaboration with:

- Felix Ahn @ Ruhr-Universität Bochum
- A.V. Chubukov @ University of Wisconsin, Madison
- J. Knolle @ MPI Physik komplexer Systeme, Dresden
- S. Borisenko, V. Zabolotnyy, B. Büchner @ IFW Dresden

Superconductivity reaches the iron age

first high-temperature superconductors since the cuprates!

stone age

Iron-based superconductors

• Layered materials: transition metal (**Fe**) plus pnictogen (nitrogen group, such as **As**)

BaFe₂As₂

Iron-based superconductors Layered materials: transition metal (Fe) plus pnictogen (nitrogen group, such as As)

Iron-based superconductors: what are the common electronic features?

Electronic-structure calculations

LaFePO Lebegue 2007 (T_c=6K)

LaFeAsO Singh & Du 2008 (T_c=26K)

Band structures for 2 materials nearly identical! Hole pocket near Γ , electron pocket near M

Electronic-structure: multiorband structure

 $\mathrm{Fe}^{2+} \Rightarrow 3\mathrm{d}^{6}$

4 holes per site – multiband structure. chemical potential lies in the gap

Comparison with other materials

Hole pockets near (0,0) Electron pockets near (π,π)

La-1111

Ba-122

courtesy of I. Mazin

ARPES

NdFeAs(O_{1-x}F_x) (x=0.1)

A. Kaminski et al.

Ba06K04Fe2As2

H. Ding et al.

Hole pockets near (0,0) Electron pockets near (π,π)

dHVa LaFePO

A. Coldea et al,

Multiorbital structure

Mutiorbital and multiband physics: several d-orbitals close to E_F

L. Boeri, O.V. Dolgov, and A.A. Golubov, PRL 101, 026403 (2008)

DFT corrangilizerep and using the states were provided to and style the states were provided to a state of the states of the sta

Is the physics behind superconductivity universal or model dependent?

Universality due to electron-phonon interaction? NO

Electron-phonon interaction is probably too weak

L. Boeri, O.V. Dolgov, and A.A. Golubov, PRL 101, 026403 (2008)

$$\lambda = 0.21$$
 \longrightarrow

 λ =0.44 for AI

 $\lambda \leq 0.35$, still not enough including magnetism

L. Boeri et al., PRB 82, 020506 (2010)

Too small to account for Tc ~ 50K

Is there any universality in these systems?

Although in some materials this may give a reasonable explanation – this is not the true origin of universality

toy model: one hole and one electron FSs

Pairing interactions:

Intra-band repulsion u₄

Pair hopping (π,π) interaction

s⁺⁻ superconductivity, BCS theory

$$(\Gamma_{\rm SC}^{\rm s+-})=u_3-u_4,$$

need $(\Gamma_{\rm SC}^{\rm s+-}) > 0$

If the intra-pocket repulsion (u_4) is stronger than the pair hopping (u_3) , the pairing interaction is repulsive

In general, intra-pocket interaction should be the largest (u_4 is Coulomb repulsion at a small momentum transfer) Intra-orbital interactions are bigger than the interorbital ones

A.V. Chubukov, D. Efremov, and I. Eremin, PRB (2008)

fRG and/or one-loop RG is extremely important

A.V. Chubukov, I. Eremin, F. Wang, D.-H. Lee, C. Platt, R. Thomale, C. Honerkamp, W. Hanke, ...

u_{ee} and u_{he} are bare interactions at energies of a bandwidth

For SC we need interactions at energies smaller than the Fermi energy

Couplings flow due to renormalizations in particle-particle and particle-hole channels

One-loop parquet RG

If the tendency towards SDW is strong, u₃ becomes larger than u₄, leading to an attraction in s⁺⁻ superconducting channel

Tests for pairing symmetry (s⁺⁻)

$$\Delta_{\rm h} = -\Delta_{\rm e}$$

Nodal gap: the behavior of $BaFe_2(As_{1-x}P_x)_2$, Tc = 30K

Y. Matsuda et al

Extension for the realistic model

> convert the model into band basis,

➢ fit the interactions by the lowest angular harmonics, and extracted parameters u_{eh}, u_{ee}, etc.

Solve and analyze the gap equations for moderate and large hole and electron dopings

For a bare interaction and for interaction dressed by the higher order bubble and ladder diagrams (spin fluctuations)

Multiorbital physics is missing \Rightarrow Origin of the gap anisotropy

- 1. importance of orbital character on Fermi sheets
- **2.** scattering between β_1 and β_2 sheets
- 3. intraband Coulomb repulsion

See also: Chubukov et al 2009, Thomale et al 2009, 2011 (band picture), Kemper et al 2010, P. Hirschfeld et al.(orbital picture)

Pairing vertex in multiband (multiorbital) systems K p3 S-wave pairing \mathfrak{u}_4 - p - k p_2 p₄ \boldsymbol{b} π $\Gamma(\mathbf{k},\mathbf{p}) = \sum \Gamma_{\mathbf{n},\mathbf{m}} \psi_{\mathbf{n}}(\mathbf{k}) \psi_{\mathbf{m}}(\mathbf{p})$ × n,m $\psi_{n,m}(\pm k_x,\pm k_y) = \psi_{n,m}(\pm k_y,\pm k_x)$ 0 h2 e1 0 π K_x Near k=0, φ along hole FS $\psi_n(\mathbf{k}) = \mathbf{A}_n + \mathbf{B}_n \cos 4\varphi + \mathbf{C}_n \cos 8\varphi + \dots$ $\psi_{n}(p) = (\widetilde{A}_{n} + \widetilde{B}_{n} \cos 4\theta + \widetilde{C}_{n} \cos 8\theta + ...)$ Near θ along electron FS $\pm (D_n \cos 2\theta + E_n \cos 6\theta + ...)$ $p=(\pi,0)$, [МГУ-Январь-2014]

Leading harmonics in the superconducting s-wave gap

$$\psi_{n}(k) = A_{n} + B_{n} \cos 4\psi + C_{n} \cos 8\psi + ... \Rightarrow A_{n}$$

Near hole FSs

$$\psi_{n}(p) = \widetilde{A}_{n} + \widetilde{B}_{n} \cos 4\theta + \widetilde{C}_{n} \cos 8\theta + \dots$$
$$\pm (\widetilde{D}_{n} \cos 2\theta + \widetilde{E}_{n} \cos 6\theta + \dots) \Longrightarrow \widetilde{A}_{n} \pm \widetilde{D}_{n} \cos 2\theta$$

Near electron FSs

effective interactions dependent on the angles along electron FSs

$$\Gamma_{h,h}(k,p) = u_{h,h}, \quad \Gamma_{e,h}(k,p) = u_{e,h} \ (1 \pm 2 \alpha \cos 2 \theta),$$

$$\Delta_{\rm h}(q) = \Delta_{\rm h}, \qquad \Delta_{\rm e,1,2}(q) = \Delta_{e} \pm \overline{\Delta} \cos 2\theta$$

Depending on the ratio the gap is just anisitropic or nodal

Leading harmonics in the superconducting s-wave gap

combination of magnetic fluctuations and angle-dependence
 of the interaction between hole and electron pockets
 ⇒ attraction in s-wave channel for all electron and hole dopings.

S⁺⁻ gap with or without nodes

interaction is necessary angle-dependent, the gaps on electron FSs have cos 2θ components and may have accidental nodes

Another example:

LiFeAs

LiFeAs: low-q fluctuations competing with incommensurate AF fluctuations

Low-q fluctuations (almost FM): Brydon et al PRB 83 (2011)

Incommensurate AF fluctuations: J. Knolle, I. Eremin, et al PRB 86 (2012)

How the superconducting instability arises in this case

Subset 1: two hole pockets mainly of xz and yz character

Subset 2: large hole pocket and two electron pockets with strong admixture of xy orbital

$$\Delta_{h3}, \Delta_{e1,e2} = \Delta_e \pm \overline{\Delta}_e \cos 2\theta$$

The coupling between two subsets is relatively weak without taking into account spin fluctuations **Possibility for the time-reversal symmetry breaking**

s+is

If only the γ – pocket and two β – pockets are present, the gap changes sign between them

s-wave A state:

If the coupling via $\alpha - \beta$ and $\alpha - \gamma$ interactions is small, both subset are effectively uncoupled and the pairing state is s^{+-} in each subset

s-wave B state: (conventional s^{+-} – state) If α - β and γ – β interactions are enhanced, both subsets are coupled and the gap changes sign between electron and hole pockets

s-wave C state: If the coupling via α - γ interaction is larger than by α – β interaction, the gaps changes sign between α and γ instead of α and β pockets

s-wave D state: If the the intra-subet β - y interaction is small, the gap changes sign between both subset I and II

Possible time-reversal symmetry breaking

The transition from one state to another might also occur discontinuously.

Possible scenario: at some $T < T_c$, existence of an s+is state with relative phases $\varphi_{1,2} \neq (\pi \text{ or } 0)$ (Figure on the right).

Superconductivity in iron-based systems

 Inter-band interaction (enhanced by spin fluctuations) ⇒ glue for the pairing for all dopings, gap structure and symmetry may change

-if both h and e pockets are present ⇒ driving force is electron-hole interaction. [SC gap has s+- form, d-wave is a competitor, s-wave gap with accidental nodes on electron FS]

LiFeAs ⇒ orbital character may change the character of the s-wave state

- Novel effects due to multiorbital structure