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The content of the universe is, up tm{ary, absolutely unknown for
its [argest part. The situation is very DARK” while the
observations are extreme[y goocﬂ
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The Observed Universe Evolution
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Future faws cf the dark energy universe Big Rip
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A ]ofetﬁom of theoretical models!!
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“..there are the ones that invent OCCULT FLUIDS
to understand the Laws qf ‘Nature. Tﬁey will come to
conclusions, but tﬁey now run out into DREAMS

and CHIMERAS neg(ecﬁng the true constitution cj:’

ftﬁings.‘...
...however there are those that ﬁ'om the simjo[est

observation @C Nature, tﬁey rqprodhce New Forces (i.e.
“New Theories)... ”

From the Preface of PRINCIPIA (11 Edition)

1687 by Isaac Newton, written by
"Mr. Roger Cotes




There is a /ﬁmd'amenm[ issue:

Are extragalactic observations and cosmology probing_
~the breakdown of General Relativity at [arge (1R)

scales?




The problem could be reversed
—

- Dark Energy and Dark Matter
as “shortcomings” of GR.
esults of flawed physics?

 The “correct” tﬁeory cf gravi could
be derived Ey matcﬁing the argest




In order to extend General Relativity we will consider two main features:

" the geometry can couple non-minimally to matter and some scalar field;

. ﬁigﬁer than second order derivatives (f the metric may appear into Jynamics

In the first case, we S:/?/ that we have scalar-tensor gravity, and in the second case-
We have higher-order theories

A. A. Starobinsky, Phys. Lett. Bo1, 99 (1980).

S. Capozziello, t. Jou. Mod. Phys. D 11, 483 (2002) .

A. De Felice, S Tsufikawa, Living Rev.Rel. 13 (2010) 3
S. g\?pozzieﬂb, ‘M. De Laurentis, Phys. Rep. 509, 167 (2011).
S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011).



A genem[ class qf ﬁ@ﬁer-ordér-scalhr-tensor theories in ﬁmr dimensions is giver

by the action

S:/d“x\/—_g[F(R, OR,CPR,...,0FR, ¢) — %g“”qﬁ;ugb;v +£(’")}
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= The simylést extension of GR is achieved assuming F = f (R), € = o, inthe
action

The standard Hilbert-Einstein action is recovered fbr f (R)=R
By varying with respect to g,,,, , we get

, f(R) , ,
f (R)R;w - Tg,uv = V,uvvf (R) — g,uvl:’f (R)

and, after some manipulations

1 / /
Gy = 71(R) {V,uvvf (R) — g f (R) + 8uv

[/ (R) — f’(R)R]}
2

where the dgmvitationa[ contribution due to higher-order terms can be-
Teinterpreted as a “curvature” stress-energy tensor related to the form of f(R).

Such a tensor disappears for f(R )=R



2

L[
<‘gaﬂ[f (R) = Rf'(R)] + f'(R).ap — 8apOf ’(R)l +

Gap =
"7 f(R)

In the case @C GR, id%nticaﬂ'y vanishes while the-
standard, minimal cou}o[i’ng is recovered ﬁ)r the-
“matter contribution

f'R) T R

is an eﬁfective stress-
energy tensor constructed.
Ey the extra curvature
terms

The peculiar behavior of AR) = R is due to the particular form of the-
Lagrangian itself which, even though it is a second-order Lagrangian, can be-
Ton-covariantly rewritten as the sum of a first-order Lagrangian plus a pure-

d'ivergence term.
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From the general action it is possible to obtain another interesting

case by choosing F=F()R— V(¢ e —=—1

In this case, we get

1
S = / V(gb)[F(qb)R + Eg“"qb;ucb;u — V(¢)]

The variation with respect to g, ,, gives the second-order field equations

2
The energy-momentum tensor related to the scalar ,ﬁ’e(cf is

1
Tfu = ¢;,u¢;v - Eguvﬁb;aﬁb;a + gWV(ﬁb)

| |
F@)Gp» = F(¢)[Ruv - _RW] = —ET;fv — gl F(@) + F(9); v

The variation with respect to ¢ provides the Klein-Gordon equation, i.e. the field equation
for the scalar field: 7 4 ? feldeq

Lep — RE4(¢p) + V() =0
This last equation is equiva&mt to the Bianchi contracted id?mtity



Con ormal tmrcz;formau’ons are mathematical tools that are very_
“useful in Extended Theories of Gravity in order to disentangle the-
ﬁﬂ’tﬁer gm\/imu’onaf cfegrees of ﬁeecfom coming ﬁom extended.

actions.

The idea s to Joerform a conforma( rescaﬁ’ng of the syace-time-’
metric.




is

Let the pair {M, g, ,} be a space-time, with M a smooth manifold of dimension n > 2

and g, , a Lorentzian or Riemannian metric on M.

The yoint-cfeyencfent resca(ing qf the metric tensor

guv — &uv = ng,uv

is a nowhere vanisﬁing, 'regufar ﬁnction, is called a Wey[ or
conﬁ)rma[ tmmﬁ)rmation

= Due to this metric rescaling, the lengths of spacelike and timelike intervals and the norms
of spacelike and timelike vectors are changed, while null vectors and null intervals of the-
metric g, , remain null in the rescaled metric

» The [igﬁt cones are &aft uncﬁcmgec( By the tmnsformation

= A vector that is timelike, spacelike, or null with respect to
~the metric g, , has the same character with respect to rescaling metric and vice versa



In genemﬂ tensorial quantities are not invariant under cm}ﬁ)rmal;
tmnsﬁwmations, neither are the tensorial equa’u’ons déscriﬁing geometry and.

‘:pﬁysics

In fact, the Christoffel symbols are

fo  _ o vo [ Ow Ow Ow
A T Ap +g Wguu + @g)\u - @g,\p

the Ricci tensor

~

The Ricci scalar R = e (R — 60w — 6w, w™)
The on(y tensor that is invariant under conﬁrma[ transﬁ>rmations is the 'Wey[

tensor e
Cgys = Cgys
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on f(R) field equations we get

dseq‘brming the confb}ma( transformation

~ 1
Gap =
PT PR

1 ! t I 1 .
| 5800 L1 R) = RFGRY]+ £/ (R20p = 8000 B | +2 (000 + 8200 = 00,5 + 5809007 )
We can then choose the conformal factor to be ~ , — % In|f'(R)]

%ca(ing W in such a way that k@ = w, and k =« 1/6, we obtain the Lagrangian

equiva(ence

N2 P T
\/__gf(R) = \/__8 (_ER + 54’;0:4’; - V)
~ | .
and the Einstein equations in standard form Gop = b.atp — S Bapd.y @ + ZupV (¢)
With the potential o
_¢ _ o) 2] _ 1 F(R)— Rf'(R)
V@) =5 [P@) N (M) ¢ = ST e

Here N is the inverse function of P(@) and  P(g) = [ exp(2kp)dN
However, the problem is completely solved if P'(¢) can be analytically inverted

Tn summary, afourtﬁ-orafer tﬁeo is conforma[[y equiva[en’r to tﬁe smmfara( secona(-onﬁzr

Finstein tﬁeory y[us a scalar ﬁefdw
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This }aroced'ure can be extended to more ﬁenem[ theories. Qf the theory is assumed.
to be higher than fourth order, we may have Lagrangian densities of the form

£=L(R,0OR,...,OR)

Fvery [ operator introduces two further terms of derivation into the field.
equations.
For example a theory like
£ = RLIR,

is a sixth-order theory and the above cygproacﬁ can be yursued' Ey considéring a
cm}formaf factor qf e form

1
@w=—1In
2

oL 4O oL
IR JUR




In general, increasing of two orders of derivation in the field equations (i.e., for every term.
O R), corresponds to adding a scalar field in the conformally transformed frame

A sixth-order tﬁeory can be reduced to an Einstein tﬁeory with two minimall couy&zd;

scalar fields; a 2n-order theory can be, in principle, reduced to an Einstein theory plus
(m—1)-scalar fields
S. gott[oﬁer, H-9 Schmidt, and A A Staroﬁinsﬁy, Class. Quantum Grav. 7, 893 (1990)

Conformal transformations work at three levels:

(i) on the Lagrangian @‘: the given tﬁeory;
(i) on the field equations;

(ii7) on the solutions.

They allow to classify gravitational degrees of freedom and reduce any higher-order tﬁeory_
to Einstein plus scalar fields
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» How we can use ETGs to address the problem of Self -

gravitaﬁng structures ?

. Do we rea(fy need DM and DE?

o How gravity behaves at various infmrec{ scales?




The weak field l[imit in f(R)-gravi
= SRt L

We can deal with the Newtonian and the post-Newtonian limit of f (R) gravity_
adopting the spherical symmetry
The solution of field equations can be obtained considering the general {pﬁericatf}t_
Symmem’c metric:

ds® = gyrdxdx’

= goo(x%, )dx"* — g, (x°, rdr? —r?dQ,

In order to develop the Newtonian [imit, let us consider the perturbed metric
With respect to a ‘Minkowskian backgroun g,,, = n,, +h,,

' (2) (4)
' / g (t,r)=1+g;7(t,r)+g,;, (t,r1),
The metric entries can be developed as: tt tt

W < grr(t,r)=—1+g7(t,1),

gop (t,1) = —17,

| 8o (t,1) = —r?sin?6,



Tﬁe Wé&lé

We assume, anafyﬂ’c Te ay[br eogpancfaﬁfe f (R) ﬁnctions with respect to a certain value ‘1{)
=R, o

R
’i' D (R-Ro)" = fo+ iR + oR2+ f3R® # ...

f®R)=)

In order to obtain the weak field approximation, one has to insert expansions into field.
equations and eagaand' the system up to the orders 0(0), 0(2) e O(4).

9f we consider the O(2) - order ( 2 2 2
i () firR® =2fig?, +8fRY ~ firgy,, +4frR? =0,

ril;{pproximation,
¢ field equations in vacuum, fArR® -2, +8LRY - firg? . =0,
Tesults to be .
o
o < 2) 2) 2) 2) )
It is evident that the trace- x [fer — N8, —h&rr +4LR + 4f2rR,rr] =0,

equation provides a differential.

rR® +6f, [ZR(Z) +rR% | =0,
;gilaﬁon with respect to the- h J: 2 T
i

4

cci scalar which allows to 2 g +r [2g§§}r ~rR® +2g%) +rg?. ] =0. (33)
solve exact(y the system at 0(2)
- order




Tﬁewea eld [imit i!” Z QRI )-ﬂmm’gi

J-"ina[fy, one gets the genem( solution:

s

"Where
6/>

—

For limit f (R) — R, in the case @"’ a
f}?oint-[iﬁe source of mass ‘M, we recover the
standard Schwarzschild solution

)

\

o_s ¥ 51 (e TV +62(t)ef\/—_f
S TOTRE T T BE e

o Y 80y =E+11eVE
Err __f1r+ 3ér
Sa(n)Er+ /=8’ VS

6E2r
L@ _ O1DeT VT 8y()y/ZEeV
r 28r

The two arﬁitmry nctions tj: time & ,(t) and & ,(t ) have regpective(y the dimensions cf’

length= and length~> .

‘Tﬁey are com}aﬁate[y arﬁitmry since the d'z:ﬁ((arentia[ equation system contains on(y {patiaﬂ
dertvatives and can be ﬁ’xed' to constant values.



. weak

~

In order to match at infinity the

, , . , 2GM  §1(1)e "V
"Minkowskian prescription for the metric, | ds®= [1 - _o1lt)e

]dtz

one can discard the Yukawa growing_ hr 3¢r T
“mode in and then we have: ) _[1+2GM_51(t)(rV_f+1)e ]drz_rde
\_/ fir 3ér ’

R = 51(t)e_r\/__€ .
\ r

In particular, since g, = 1+2 Pgrav = 1+ g(2),. , the gravitational potential of
f (R)-gravity, analytic in the Ricci scalar R, is

GM | S1(t)e "V
fir 6¢r

q)grav ==

This genem[ result means that the standard Newton yotenu’a[ is achieved onfy in the
fyam’cufar case f (R) = R while it is not so for any cmafytic f (R) models

The parameters f, , and tﬁe{ﬂnction 8 , represent the deviations with respect the
standard Newton potentia

S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)



’J'ﬁe Weaﬁ

We note that the & L A . and can be interpreted also
parameter can be related to by m" =37 = 35 Ly as an effective length £

an effective mass being
GM _r
()=~ (14067 <J

The second term is a mocﬁfication cf the gmvity incfudi’ng a scale léngtﬁ

flf 8 = o0 the Newtonian yoten’a’a( and the standard gmvimtiona( couy(ing are recovered.

0
1+6

6GM
Assuming 1+8 =f1, O is related to 8 1(t ) through O1=~—3

Under this assumytion, the scale [e'ngtﬁ L could natum[@ arise and re}arodhcy
several yﬁenomena that range from Solar System to cosmofogicaf scales.
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‘Unc[erstancfing on which scales the mocfiﬁcau’ons to General
M’au’vily are working or what 1is the weight of corrections to
gravitational Joownu’a? is a crucial point thgat could confirm or
Tule out these extended approaches to gravitational interaction.

Od oo
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St'e‘ar strictures‘and ‘Jeans insmﬁmﬂ’

1t is usually assumed that the dynamics of stellar objects is completely determined by the-
“Newton law of gravity

Considering potential corrections in strong field regimes could be another way to check the-
Viability of Extended Theories of Gravity

In particular, stetfa;'jyswms are an ideal laboratory to look for signatures of possible-
“modifications of standard law of gravity

Some observed stellar systems are incompatible with the standard models of stellar
structure : these are peculiar objects, as star in instaﬁil’:’z/ strips, protostars or
anomalous neutron stars (the so-called “magnetars” with masses larger than their expected.

Volkoff mass) that could admit dynamics in agreement with modified gravity and not”
consistent with standard Genera ‘Re(ativity




R( )
2
(0) A R® — R® = XTO)

Field equations at O (2)-order, that is at the-
“Newtonian level, are

FR)F R0 F ) R,
The energy-momentum tensor for a perfect fluid is
= (e + pluyu, = pguy
The pressure contribution is negﬁgzﬁﬂz in the fw[c( equauons of Newtonian.

cygpr oximation

— f(0) AR® = XT}

R®
AD+— 5 + f7(0) AR® = — Xp

modified Poisson equation 3F10) A RO + RY = — Xop,
S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)
For f(R) = 0 we have the standard Poisson equation AD = —47Gp
From the Bianchi identity we have ur — 0 20 — _L(, 4 0108

o xk axk
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Stellar structures'and Jeans insmﬁfﬁg_

-

Let us suppose that matter satisfies a polytropic equation p = K YpY

We obtain an integro-differential equation for the gravitational potential , that is

5 §/&o / 4
d ”LU(Z) N 2 dw(z) N w(z)n B m—fol/ ds' 5 {e—mfo|z—z | e—m§0|z+z |}w(zl)n
0

dz? z dz 8 z
Lané-FEmden equation in ﬂﬂ)-gmvﬁy B S AR
. . . 08 - \~‘ ‘\» ~'Q
We find the radial profiles of the- | NN
gravitational potential by solving for some- | B N
s _ s 1 ) \.‘\
Values of n (polytropic index) s o
04 i ‘::.‘ ) .\t‘
“New solutions are physically relevant” | ‘:;‘\\ ",
P , - YN A\
and could explain exotic systems out of 02} S AN
L e N .
“Main Sequence (magnemrs, variable ; RN \\\\ .
stars). R R

S. Cc_tpozzie[[o, ‘M. De Laurentis, A. Stabile, S.D. Odintsov, PRD 83, 064004, (2011)



Stellar structuresand Jeans insmﬁmﬂ’

- — — | w—
e have also compared the behavior with the temperature of the Jeans mass fo
Various types of interstellar molecular clouds

1200 F

~ 6 P
M;=6 M, 1000 F ]
J(?’ +V21)° 800 |

= :
In our model the [imit (in unit of mass) to start” = o

~the collapse of an interstellar cloud is lower b0k

~than the classical one ad%rantaging the structure- 0 bt
, 0 10 20 30 40 50 60

Fformation. T/[K]

S. Cayozzie[fo, M. De Laurentis 1. De Martino, M. Formisano, S.D. Odintsov
‘fﬁysﬂ{ev. D85 (2012) 044022

Subject TE) n(10°m 3) u M; (Mg) M; (My)
Diffuse hydrogen clouds 50 5.0 1 795.13 559.68
Diffuse molecular clouds 30 50 2 82.63 58.16
Giant molecular clouds 15 1.0 2 206.58 14541
Bok globules 10 100 2 11.24 7.91




ézlcfc[ressing stellar Z/\/stems Ey this a}opmacﬁ could be extremef%
important to test o servationa[fy Extended Theories @[ Gravity.
Also gmvimtiona[ waves could be a test-bed for these theories.




Quadrupolar gravitational mau’on in R)-gravi

e > 5
e — e~ i s _

e

We calculate the Minkowskian limit for a class of analytic f(R)-Lagrangian

n R 1
FR) = ST (R Ry o+ iR+ R 4

n

Field equations at the first order of approximation in term of the-

“perturbation , become:

/ R(l) " X
fO !Rill\) - 2'7;1\'] —JO {R(llz' o ’7;1\'DR(1)} — jTE?\?
The explicit expressions of the Ricci tensor R =h{, e — 30, —1h,,
and scalar, at the first order in the metric 1) h"U‘T h
“perturbation, read — R =g -0

S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)
“M. De Laurentis, S. chaozzie[fo, ?lstrqpam’cfe ‘Pﬁysics 35,257 (2011)



Quadrupolar gravitational mau’on in R)-gravi

e 5
e — SN 5

e

1f we assume that the source is localized in a finite region as a consequence-
/4 /4 /4 — ]
outside this region T, , = 0, and then we have that R = Dhyy = 0

With this assumption we can calculate the energy momentum tensor qf’
gravitational field in f(R)-gravity adopting the definition given in Landau and.
Lifshitz (1962)

OR 1 OR OR OR
b= {2 (V0 s 52} -
f agpa,)\ —9g ¢ gagpa,/\g Jeo, agpa,)\g i f * 89,00,)\5 ad f

The energy momentum tensor consists of a sum of GR contribution plus a term.

coming from f (R)-gravity :

A / ¢ A I 4 A
tQ’ :fOta|GR +fOt

a|f(R)

“M. De Laurentis, S. chaozzie[fo, ?lstrqpam’cfe ‘Pﬁysics 35,257 (2011)



Quadrupolar gravitational mu’on in R)-gravi

—
~

...in term qf the yerturﬁaﬁon h s

2 o) 1/ N0 A A 1 S/ NG
¢~ fith, {(hfpa ~ Oh) [hm b} — o - Dh)]

—h*? h/; + hP° th + h’;[]hS — Dh"‘h,x}.

POC PO

In the weak field (imit, the source h,, is written as function of time t' =t —r, and_
ip&me wave quroximation

y) 11,4 lea) 1 Y 1, 0G 2
~the energy momentum. t;, = Jok ks (hl h/m) —5J0% (kpkah’ )

tensor assumes the ﬁ)rm: ~- -
GR f(R)
—/

"M. De Laurentis, S. Capozziello, Astroparticle Physics 35 , 257 (2011)
De Laurentis M., De Martino 1., 2013, MNRAS., dbi:lo.logg/mnms/stt216



Quadrupolar gravitational mu’on in R)-gravi

—
~

In order to calculate the radiated energy of a gravitational waves sources, we-
consider the averzge energy flux dE/dt away from the systems and the momenta of”
~the mass-energy distribution

Finally the result is

dEN\ G [, (ij (e ijiss ’forf’o=0amf dE G o
() & st - T ()5 o
(total) C:&% fZ;?) ‘_/ N——

(GR)

’ The massive mode-
Vv contribution is evident,

< This means that this ﬁn'tﬁer term qﬁécts both
1E , ceiioee N1 fees e
<( > = Glo <(Q JQ-Z:J-) - % (Q 7Q vi.j) > ~the total energy release and the waveform.

dt 60
w
(total)

This could represent a ﬁn‘tﬁer signature to invesu’gaw
such theories in the GW strong-)éfd’ regime.



Application to the binary systems

— .

Assuming Keplerian motion and the orbit in the (x; y)-plane
~the quadrupole matrix is

sin 1 cos U sin”

o 2 COS W S111 P COS ()
Q'zij = ,U,T’
]

~the time average qf the radiated power

k T (/s 27 oy e H G e . o\ — = N\
aEN _ l/ it EW) l/ A dEW)  Where ) — ( 7;’) (1—€®) 72 (1 +ecosp)?
dt T J, dt T J, ’ dt a:

[

b

oo

_ _i( T >_% ;1.(}"%(7716 + 'm,p')%
The tgne ;ferivative of T 20\ 27 5(1 — n2)%
the orbita "o 2m—1
/ / . : 2 o f o7 T
'joerwcf X {fo (37 +292¢* + 96) 21 + n2)3

x (891€® + 28016€° + 82736€* + 435206 + 3072)]

"We will go on to constrain the f (R) theories estimating f’o ﬁom the comparison between the-
~theoretical predictions of dT; and the observed one.



Qﬂpﬁcaﬁon to the Einary systems:

o

R ————

e

The PSR 1913 + 16 case

- AN -
. \5; &

‘Using the values for the specific
example of PSR 1913 + 16 to
numerically evaluate the above-
equations

PSR 1913 + 16

Chacteristic features

Pulsar mass
Companion mass
Inclination angle
Orbit semimajor axis
Eccentricity
Gravitational constant
Speed of light

m =1.39M,,

M =1.44M.,

sini =0.81

a=8.67 x 10'°cm
€=0.617155

G=6.67 x 1078 dyn cm? g2
c=2.99x10"%cms!

10
5 X T T T T T T T T T
3L
SF
2+
S
1 m— dT(f(R))
I + + 1+ GRIimit T
05} v == 1 | ower limit set by HT| |
== = Upper limit set by HT
0 | | | | | | | | |
-3 -28 -26 -24 -22 -2 -18 -16 -14 -12 -1
Mo x10°

Orbital decay rate for PSR
1913 + 16 in ﬂﬂ)-gmvi?p
‘Uﬁer [imit set by T aylor et”
al. in dashed line. GR limit’
3.36X 1072 in dotted (ine-
and the lower [imit set 61_

Taylor et al, in dashdot Tine.
Sogf line is dT ¢ (g

A class qf f(R) agrees with data!



%xtendédl Theories @"' ravity can also impact on the estimate (f
‘M properties on galactic scales

%c{[iﬁ’ea[ gravity could be a possible way to solve the cusp/core and.
similar problems of the DM scenario without asking for huge-

amounts qf DM
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“Yukawa-{ike corrections are a genem[ ﬁzature, in tﬁe ﬁameworﬁ qf f (‘R) -gravity

o is the stamng point ﬁ)r the-
This equation L D) = — (1 e T ) computation of the rotation.
(1+0)r curve qf an extended system.

Considerin ﬂ a general expression derived for a generic potential giving rise to
a separable force GM,

Fp(p,r)=——fu(@) fr(n)

S

With 4 =M/Mg, N =r /r. and (Mg, r.) the Solar mass and a characteristic
length of the problem

—ning)
In our case, fi =1 and: ‘ :(1+ n)eXp( nmnr
d i n) (1+0)n?

With 0 ; =L/r,



1 ’ | —— _——-__.-. ~ - - = — —_—— ;%n%'* =
] eSfmg .EP YA X 1S —
— — —— >

Using cylindrical coordi’a (R0, 2) and e crres onding dimensionless
Variables (n,0,¢) (with & = z/fs ), the total force 'd{m reads:

Gpors [°

F _
(r) 1+6 Jo

n'dn' f af’ fo fr)pm',0',¢hae’

With "0 = p/P o, O o a reference density, we have

A=[n*+n"*-2nn"cos(©®-0") + ((—(’)2]1/2

For oBtaining axisymmetric systems, one can set 0 ~ =0 “(n,¢&).

S. quozzieﬂb, ‘M. De Laurentis Ann. CPﬁys. 524, 545 (2012)
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The systems we are considéring here are syim[ ga[axies which will be modeled as

~the sum of an infinitesimally thin disc and a spherical halo, and then
~the scaling radius v, will be the disc scale length R,

Under these assumptions, v2(R)
the rotation curve may be- -
med as: poR2n oo o "
Ogtalnedas. — 1 +(;i ) T,ldn/j; p(nl’cl)d(lﬁ fr (AO)dHI

M’itﬁ A():A(H:{:O): [nz+77’2_277T],C089,+{,2]1/2

It is evident that the total rotation curve may be gp(it in the sum (f the-

standard Newtonian term and a corrective one disappearing for £ —, f.c.
When ETGs have no deviations from GR at galactic scales.

S. quozzieﬂb, ‘M. De Laurentis Ann. CPﬁys. 524, 545 (2012)
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The total rotation curve is:

v=(R,Mg,pi)

= vy (R, Ma) + Vi (R, pi) + vy (R, Mg) + U}y (R, pi)

Md is the disc mass, d and h denote disc and halo related quantities, while N and Y
Tefer to the Newtonian and Yukawa-like contributions

One may model a spiral galaxy as the sum of a hick disc and a spherical halo
Without DM contribution.
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Figure 4 Examples of simulated rotation curves with superim-
posed theoretical curves. From left to right, model parameters
are (logM;,log Myir, c, fpm,lognr) = (1115, 12.90, 10.24, 0.47,
0.36),(10.90, 11.76, 14.77, 0.45, —0.92), (10.04, 12.10, 13.76, 0.54, 1.11),
while the simulation parameters are set as discussed in the text.
Note that, depending on how the model parameters are set, it is
possible to get rotation curves which are flat, decreasing or in-
creasing in the outer region.



The modified potential can be tested also for elliptical galaxies checking whether it is

able to jorow’cfe a reasonable match to their kinematics.

Such self-gravitating systems are ve:zy different with respect to spirals so
ac[c[ressing both classes qf oEjects under the same standard could be a_
ﬁmcfamentaf step versus DM

One may construct equilibrium models based on the solution of the radial Jeans
equation to interpret the kinematics of planetary nebulae

We use the inner long slit data and the extended planetary nebulae kinematics for
~three galaxies which have published dynamical analyses within DM halo

framework

They are:
"NGC 3379, (DL +09) , NGC 4494 N +09 , NGC 4374 (N + 11).



It is shown the circular ve(ocity cf the modi:ﬁ’e{{powmiaﬂ
asa ﬁmction @C the potential parameters Land 6 fbr

"NGC 4494 and NGC 4374.

From a theoretical point qf view, 0 isa ﬁee parameter
~that can assume positive and negative values.
Comparing resuﬁ}'as or spirals and e[ﬁ’})’a’cafs, it is clear
that the mmyﬁolbgy of these two classes (f systems
sm’ct[y déyend& on the sign and the value of & .

Veire (km/s)

500 ~r+rrr—rrrrrrrrrrreeeeere
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Ny
N~ ~ i
. - - —
300 R ) -
.
.
.
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r |arcsec]|

Figure 6 Circular velocity produced by the modified potential for
the two galaxies N4494 (top) and N4374 (bottom). In both cases
the M/, has been fixed to some fiducial value (as expected
from stellar population models and Kroupa 2001 IMF): M /%, =
4.3Y ; g forNGC 4494 and M/ ¥£, =5.5Y 5 y for NGC 4374. The
potential parameters adopted are: L = 250" and §-=0, -0.65, -0.8,

-0.9 (lighter to darker solid lines) and L = 180" and §=-0.8 (dashed

lines). The dotted line is a case with positive coefficient of the
Yukawa-like term and L = 5000" which illustrates that positive
o cannot produce flat circular velocity curves. Finally some refer-
ence Navarro-Frenk-White (NFW) models are shown as dot-dashed
lines [108].
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LIPS galaxies

2 4\ —
— 3 -

The yroﬁﬁem cf ﬁﬂing a mooﬁﬁ’eaf yotentia( (which is forma(fy seﬁ%onsistent

im}o[ies the same kind qf dégenemcies between the anisotr Y parameter,

B =1-02,/0 2r (where 0 4 and 0, are the azimuthal and radial dispersion components
in syﬁerica( coordinates), and the non-Newtonian part o the ]ootenu’a[ (cpﬁamcterizecf Ey two
parameters [ike tyyica( dark haloes) in a similar way o the classical mass-anisotroyl.
d?agenemcy

These dégenemcies can be alleviated via higher-order Jeans e?uau’ons incfua{ing in the-

Jynamica[ models both the d'i.yoersion (o P and the kurtosis (k) }mﬁﬁas qf the tracers

Under syﬁem’ca[ assumption, nonrotation and B = const (corre.?ond’igg to the fami(y qf‘
distribution ﬁncﬂ’ons (EL) = fgﬂ'ﬁ, the 2-nd and 4-th moment radial equations can be-

comjoact(y written as:

s(r) = r’zﬁfooxzﬁH(x)dx

Mﬁ?re s(r)={p0 02;0v4, }, B is the 10 do— Tespectively for the-
anisotropy parameter, H(r) = {p —;3p— 12 } dispersion and kurtosis
and dr dr

ecluau’ons



The overall match qf the model curves with data is remarﬁaﬁ[y goocf and it is comyamﬁ[@z with
models obtained with DM modé[ing (gmy [ines)

2

N4494

g

dispersjon
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Figure 7 Dispersion in kms (top) and kurtosis (bottom) fit of
the galaxy sample for the different f(R) parameter sets: the
anisotropic solution (solid lines) is compared with the isotropic
case (dashed line — for NGC 4374 and NGC 4494 this is almost

Radius [arcsec]

Radius [arcsec]

indistinguishable from the anisotropic case). From the left, NGC
4494, NGC 3379 and NGC 4374 are shown with DM models as gray
lines from N+09, DL+09 (no kurtosis is provided), and N+11 respec-
tively [108].



The marﬂinafizecf corﬁd@nce contours of the main two
f’powntia parameters for the three ga[axies
there seems to be a possible increasing

trend qf S with the orbital anisotropy

Table 4 Model parameters for the f(R) potential.

40

L [kpc]

Galaxy Mag (band) Regt MI/L, i s i} x?/dof

NGC3379 -19.8(B) 2.2 6(7) 6 -0.75 0.5(<0.8) 14/25

NGC4374 -21.3(v) 3.4 6 (6) 24 -0.88 0.01(0.01) 14/39 05

NGC4494 -20.5(B) 6.1 3(4) 20 -0.79 0.5(0.5) 18/43 '
Notes — Galaxy ID, total magnitude, effective radius and model parameters for the unified solution. DM-based estimates for 0.0k
M/ %4 and B (NGC 3379: DL+09; NGC 4374: N+11; NGC 4494: N+09) are shown in parentheses for comparison. M/ %, are ' /
in solar units, Regf and L in kpc. Typical errors on M/ %, are of the order of 0.2M /%, and on f of 0.2 (see also Fig. 8). The* y
small y? values are mainly due to the large data error bars. —0.51 _ y

/
s
such a ﬁmcuon could be related to second order gﬁcts oL
-1. —4
7/ Id /47 7/

connected to anisotropies and non-homogeneities which_ F —— — -

could trigger the formation and the evolution qf stellar
systems

This results can have interesting im}aficcm’ons on the-

ccgoaﬁi(i of the tﬁeory @C maﬁing Joredi’ctions on the-

internal structure qf the gmvimting sgstems qﬁer their

Sjoﬁen’ca[ co[[ayse. However, this Jaossi i[ity has to be-
conﬁrmed on farger ga(axy samjofes

Figure 8 Top: 1- and 2-0° confidence levels in the  — L space
marginalized over M/ %, and f3 (see also Table 4). Spiral galaxy re-
sults from [105] are shown as empty triangle with error bars. Solid
(dashed) curve shows the tentative best-fit to the data including
(excluding) the spiral galaxies and assuming a L o< v/3/(1+90).
Bottom: the anisotropy and the § parameters turn out to be corre-
lated for the elliptical sample (full squares). This correlation seems
toinclude also the spiral sample cumulatively shown as the empty
triangle (here we have assumed f = —1.0+ 0.5 as a fiducial value
for spiral galaxies to draw a semi-quantitative trend across galaxy

types) [108].



, "Modeling clusters of galaxies

A ﬁmd'amenta( issue is related to clusters and su,percﬂtsters (f ga(axies.

Such structures, essenﬁ:zwﬂ'ﬂ, rule the large scale structure, and are the intermediate
step between galaxies and cosmology.

As the galaxies, tﬁe{y appear DM dominated but the distribution of DM
component seems ¢ ustered and orgcmized' ina ve?/ di:ﬁc(arent way with respect”
to galaxies. It seems that DM is ruled by the scale and also its fundamental.
nature could depend on the scale

Our goa( is to reconstruct the mass prqﬁ&z qf clusters without DM ad'qpting the-

same strategy as above where DM effects are figured out by corrections to the-
“Newton potential

w  — “



"Modeling % iusters ot ﬂa[axies f

Standard Cluster Model: spherical mass distribution in hydrostatic equilibrium

- Boltzmann equation: _d® _ KI(r) | dlnpgas(r) | dInT(r)
dr  pmpr dinr dinr
1 GM
o(r)=——
- Newton classical approach: < ’
Pel EC'(:T) = Pdark + pgas(‘r) I Pgal ( ‘) -+ pC'Dgal('r)
.
4 ,
¢ (7) - 4(1-11‘ (1 §€ )

- f(R) approach: <

- Regrranging the Boltzmann equation:
.

. 3G M ey _kT(r) [dInpges(r) dInT(r) B da; ,dPec
on(r) =— dasr Miaran(r) = 3 [ lt??lpG? dlnr i dlnr 3G’ dr r)
. <
o GMeE A
dolr) = — da; r Mpar.obs(T) = Mgas(r) + Mgai(r) + Mcpgar(r)
\




“Modeling clusters of galaxies

EE———
Fitting mass Profile with data:

- Sample: 12 clusters from Chandra (Vikhlinin 2005, 2006)

- ‘l'émyemture yrqﬁ(e from spectroscopy
- Qas dénSity: mOd"L:ﬁed‘ Eeta-modé( NN = n_g " (r/re)”® 1 '”g-z

e § = T NEET
(1 + 7,2/7,5)33—0'/2 (1 4 rY /,rs! )E/“,’ (1 + 7,2/7.32)3;32

- ga’(axy déns{ty: poetr) = - [1 . (Rc;‘% - - PCDgal = ( )2120“]

Pgal,2 * [1 + (RLC ro> He

re

Table 1. Column 1: Cluster name. Column2: Richness. Column 2: cluster total mass. Column 3: gas mass.
Column 4: galaxy mass. Column 5: cD-galaxy mass. All mass values are estimated at r = ryq.. Column 6:
ratio of total galaxy mass to gas mass. Column 7: minimum radius. Column 8: maximum radius.

name R M.~ Mgas Mgar M:pgai ;’Zi Tmin  Tmaz
(Mg) (Mg) (Mg) (Mg) (kpe)  (kpe)

A133 0 4.35874-10%  2.73866 - 1013 5.20269-10'2 1.10568-10'2 0.23 86 1060
A262 0 4.45081-10'3 2.76659 - 1012  1.71305-10'! 5.16382-10'2 0.25 61 316
A383 2 2.79785-10% 282467103 5.88048 -10'2  1.09217-10'2 0.25 52 751
A478 2 8.51832-.1014 1.05583-10'4 2.15567-10'% 1.67513-10'2 0.22 59 1580
A907 1  4.87657-10'% 6.38070- 103  1.34129.10'3 1.66533.10'2 0.24 563 1226
A1413 3 1.09598 - 1015  0.32466 - 1013 2.30728 - 10'3  1.67345-10'2 0.26 57 1506
A1795 2 1.24313-10%  1.00530- 1013  4.23211-10'2 1.93957-10'2 0.11 79 1151
A1991 1 1.24313-10'%  1.00530-10%3  1.24608-10'2 1.08241-10'2 0.23 55 618
A2029 2 8.92392-10%  1.24129-1014 3.21543-10'3 1.11921-10'2 0.27 62 1771
A2390 1 2.09710-10%%  2.15726-10' 4.91580-10'3 1.12141-10'2 0.23 83 1984
MKW4 - 4.69503-1013  2.83207-10'2 1.71153-10'! 5.20855.10!1 0.25 60 434
RXJ1159 -  8.97997-10%3  4.33256-10'2  7.34414-10'' 5.38799.10'! 0.29 64 568




’)vloc[e(ij}g clusters ot Qafaxies * -

s sy P P e \[bar obs — J\{bar,theo)g
Minimization qf cﬁz-square. B — Z TP
Markov Chain Monte Carlo:
1 | ) ( X5 e accepted step
, ( ) ) e
% (p‘ l)l ) —mind 1. | q p I ) * rejected step
' dll))P(l) )Jq(p.p’)
LN
Tew point out qf prior
%ect min < 1; ) ) )
Tew point with greater cﬁt-scluare
Accept min = 1: new point in prior and less chi-square X,

Sample of accepted points s Sampling from underlying probability distribution
- Power spectrum test convergence:

Discrete power spectrum ﬁom samjofes l__/ Convergence = ffat spectrum



|

~5x10%%}
=7

=1x10%h

’Mocfeﬁl%g clusters of galaxies
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- Differences between theoretical and observed fit less than 5%
- Typical scale in [100; 150] kpc range where is a turning-point:

+ Break in the ﬁycfrostatic equi(iﬁm’um

» Limits in the expansion series of ﬂ‘R): R— Ro << 2L inthe range [19;200] @pc

a2

Proper gmvitationa( scale (as jbr ga(axies, see Capozziello et al MINRAS 2007)

s Similar issues in Metric-SEew-‘Ténsor-@mvﬁy (Brownstein, 2006): we have better

and more detailed a}yaroacﬁ



“Modeling clusters of galaxies
TR A

Results

[a1 — 1o, ay + 14] as [az — 1o, az + 14] L [L — 1o, L + 1]
(kpe?) (kpe?) (kpe) (kpe)

A133 | 0.085 [0.078, 0.091] —4.98.10% [-2.38.10%, —1.38.10%] 591.78  [323.34, 1259.50]
A262 | 0.065 [0.061, 0.071] —10.63 [—57.65, —3.17] 31.40 [17.28, 71.10]
A383 | 0.099 [0.093, 0.108] —9.01-102 [-4.10-10%, —3.14-10%] 234.13 [142.10, 478.06]
A478 | 0117 [0.114, 0.122] —4.61-10* [-1.01-10% —2.51.10%]  484.83 [363.29, 707.73]
A907 | 0.129 [0.125, 0.136] -5.77-10° [-1.54.10% —2.83.10%] 517.30 [368.84, 825.00]
Al1413 | 0.115 [0.110, 0.119)] —9.45.10%  [—4.26-10%, —3.46-10%] 2224.57  [1365.40, 4681.21]
A1795 | 0.093 [0.084, 0.103)] —1.54-10° [-1.01-10%, —2.49.10%] 315.44 [133.31, 769.17)
A1991 | 0.074 [0.072, 0.081] —50.69 [-3.42- 102, —13] 64.00 [32.63, 159.40]
A2029 | 0.129 [0.123, 0.134] —2.10-10%  [-7.95-10%, —8.44.10%] 988.85  [637.71, 1890.07]
A2390 | 0.149 [0.146, 0.152] —1.40-10°% [-5.71-10°, —4.46.10%] 7490.80 [4245.74, 15715.60]
MKW4 | 0.054 [0.049, 0.060] —23.63 [-1.15 102, —8.13 51.31 [30.44, 110.68]
RXJ1159| 0.048 [0.047, 0.052] —18.33 [—1.35-10%, —4.18) 47.72 [22.86, 125.96]




. %odé(ing clusters of galaxies

Results: expectations

- First derivative, a, : very well constrained Q 1t scales with the system size
3GM |
Newtonian [imit; o(r) = — T (1 -+ §e 'E') I—> a, 93/4
10 B bl | Wiy | e | TITey

08E 2
; - i i fi
06 | ' =

L I | : d

L | : d

I

02f | 2 | §
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" "Modeling

Point (ike }oowﬂu’aﬁ

clusters of galaxies

Cluster of Galaxies: a; = 0.16 - L = 1000 kpc

Galaxies: a; = 0.4 - L = 100 kpc
Solar System: a; = 0.75 - L = 1 kpc
Newton Limit: a; = 0.75 - L = 0 kpc

0
_20_
Clusters

= _40 Sﬂ@'-m— 7

1;1 “Newton

qQ

)

8 -60 .
_80 _
-100 ] 1 ] :

0.0 0.2 0.4 0.6 0.8 1.0
r ( kpc )



name

A133
A262
A383
A4T8
A907
Al413
A1795
A1991
A2029
A2390
MKW4
RXJ1159

ai

0.085
0.065
0.099
0.117
0.129
0.115
0.093
0.074
0.129
0.149
0.054
0.048

[a1 — 1o, ay + 1]

[0.078, 0.091]
[0.061, 0.071]
[0.093, 0.108]
[0.114, 0.122]
[0.125, 0.136]
[0.110, 0.119]
[0.084, 0.103]
[0.072, 0.081]
[0.123, 0.134]
[0.146, 0.152]
[0.049, 0.060]
[0.047, 0.052]

[az — 1a, ag + 1a]

(kpc?)

[—2.38 - 104, —1.38 . 103]

[-57.65, —3.17]
[~4.10-10%, —3.14 - 102
[-1.01-10%, —2.51 - 10%]
[-1.54-10%, —2.83 . 10%]
[—4.26 - 105, —3.46 - 104
[-1.01-10%, —2.49.10?]
[-3.42 - 102, —13]
[-7.95 - 10%, —8.44 . 103]
[-5.71-10°%, —4.46 - 107]
[-1.15 102, —8.13]
[-1.35-10%, —4.18)

591.78
31.40
234.13
484.83
517.30

2224.57

315.44
64.00
988.85
7490.80
51.31
47.72

(L — 1o, L + 10]
(kpe)

[323.34, 1259.50]
[17.28, 71.10]
[142.10, 478.06]
[363.29, 707.73]
[368.84, 825.00]
[1365.40, 4681.21]
[133.31, 769.17]
[32.63, 159.40]
[637.71, 1890.07]
[4245.74, 15715.60]
[30.44, 110.68]
[22.86, 125.96]




| "Modeling clusters ot ﬂa[axies

- Gravitational length: [ = [,(ay, ay) = ( 6az ) i Strong characterization of

“\ a L ,
! Gravitational }aotenua[

o <L>, = 318kpe < az >p= —3.40 - 10
~ Mean g < L >y = 2738 kpe < ag >ym= —4.15- 10°
- Strongly related  to virial mass | %} '
(-the same for gas mass): } {,,m P -
- Strongly related to average 2 foee
temperature: os| g
b FJ” }AI??

1 1 1 1 1 1 L1 1 1 1 L1
4.0 60 8.0le02 20 4.0 60 80le02 290 40 0 80104
L



Q’R Eased' modé[s Vs f(R) gmwty

| >~ How canwe discriminate?
2
Agreement with Data...

_/

- No a priori dynamical model = Model Independent Approach;
- Robertson - Walker metric;

- Expansion series qf the scale factor with respect to cosmic time:

o) = 14 Hy(t—19)— Hz(t to)?+ J°H3(t to) +—H4(t to)’ +Z—DH§’(t—t0)5+O[(t—t0)6
a(to) 3! 5!
1d%a 1 1ad s il 1d°a 1
a dt2 H? a dt3 H3 adt* H adt® H
Deceleration TJerk Snap Lerk

ervor on d (z) less than 10% up to z = 1

Fxpansion up to fifth order : <

_erroron U (z) less than 3% uptoz=2



- Definition: lda . 1d% 1 | dBa 1 {d% 1 1d°a 1

H(t) = ——, q(t) = —— T 3 jt) = T EE s(t) = et l(t)=—

- Derivatives of H(t): \___> H=—-H*(1+q)

H = H*j+3q+2)
d®H/dt® = H*[s — 45 — 3q(q +4) — 6]

d*H/dt* = H® [l — 55+ 10(q + 2)j + 30(q + 2)q + 24]

\

£, 7 A —_— 2 —
- Derivatives qf scalar curvature: . o= —0Hi(1—q)
Ry = —6H3(jo — g0 — 2)
R= —6(H + 2H?) i
Ro = -—G.HE,1 (So + qg . 8(10 + G)

d’Ro/dt® = —6H, [lo — so + 2(go + 4)jo — 6(3g0 + 8)go — 24]



H%)QM _}_f(.Ro) - Rof'(Ro) 6”0R0f"(R()

- 1% ] .2 H: = —
15 Friedmann eq 0 = FIR) 67'(R)

- 2" Friedmann eq. : 3HE,, N R2f"(Ry) + (Ry — HoRy) f"(R,)

21" (Rp) 2f'(Ry)
- Dertvative qf 2nd ‘Friedmann eq. :

— 1.'10 —

R2f"(R) + (j? - HB’) f"(R) + 3H2Q a3 R3fV(R) + (3}?}? - HR‘Z) f"(R)
2 [Rf(R)] " [F(R)F _ B
(d3R /dt3 — HR + HR) f"(R) — OH2Q ) Ha™3
2f'(R)
- Constraint ﬁom gmvitationa( constant:

H? = SEG [ p f(R)] ‘ G 0) =G R 1.
3f’(R) O m pc,ur\ \—/ Jeff(\ = J - f( ()) —

H =




- Final solutions: (L) Polqo, jo. s0,1lo) 2 + Qolqo. jo. 5o, lo)

GH(% ’R'(q(J?jO?SOSZO)
F(Rs)=1
f"(Ro) _ _,PQ((IO.sta so) 0 + Q2(q0, Jo, So)
(6H2)™ R(q0, Jo, S0, lo)
f"(Rp) _ _'PB(QUsJ'osSO_- o)1 + Q3(q0. Jo, So, lo)
(6H2)* (Jo — g0 — 2)RA(q0, Jo, S0, ln)

- Taylor expansion {R) in series of Rup to third order (higher not necessary)

- Linear equations in f(R) and derivatives

(l.l = (.041

- Oy is model dependent:
(2‘ f: = (.250.



“Precision cosmo(ogy | / > Values qf cosmogrqpﬁic parameters?

.. Dark energy parameters = equivalent f(R)

Cosmographic parameters
CPL Wroa(:ﬁ: w=wy+w,(l —a)=wy,+w,z(l+2""
(Chevallier, Polarski, Linder)

1

%o =73 5(1 — (ap Jwy

3
jo=1+ 3(1—”\1 ) [Bwo(1 4 wo) + w,)

ﬁ' 7 33 _ 9
Cosmogrcyo 1C by = T(I — Oy )w, — 1(1 — Q) [9 4+ (T — Qar)wa) wo +

. 9 . 2T . 5
’jﬂaramewrs. - (l — Qg )(16 — 32y Jwg — T(l — ) (3 — Qg )wy

35 1—(
: el 213 4 (7 — Qg )wa] w, + 1~ ) [489 + 9(82 — 211 Jw,] wy +

2

O~

0 3
+ 3(1—QM) 67—‘31$?,m1+3(‘23—119,«1) o| Wh + 4(1—‘7n1)(4' 240w +

81 . 2
8 T(l - )3 - 232;\!)“'(4»



Y -4 5,

DM model; (wy, w,)

A

|
—
I
=
S |

13 . 9 27
0o=5—5; Jo=1 so=1-30 lb=1+30u+ TQiI

f(Ro) = Ro + 2A, f"(R()) = f”’(Ro) = (),

N CDM fits well many data ey cosmographic values strictly depend on Q

64 — 67 (920 + 8) o B

. 20 = To7 T 02 A

go = ‘]{)\ e (1 A8 Sq ). j() — Ji‘)\ X (1 + 81), [3(99” + 74)9,&! == 556] QAI + 16 27

S0 = S‘(;\ X (1 + &), Iy = lz‘)\ X (1+ &), . 6 (8192 — 110)Qps + 40] Q2 + 16 i £
B30 = T390 + 74)Qr — 556] B, + 16 . 24305,

2o = f"(Ro)/ f(Ro)x Hy

o

< { mo = 0.15 x ¢ for Qp = 0.041

20 = —0.12 X for Qj\.{ = (.250

3o = f”’(RD)/f(Ro)XHg { a0 =4 X & for €2y =0.041
\

nag =~ —0.18 X for Q= 0.250

oy



- Constant ‘EoS:

- Beware of d'ivergences in the fR) derivatives

- Small deviations from GR
- Large deviations for baryonic dominated universe
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modéﬁ' ; y Cosmogfr

1. Estimate (q(o), ](o) s(o) ((0)) oEservauona[Ty
2. Compute f(Ro), f (Ro), f “ (Ro), f ”(Ro)

- Procedure: <
3. Solve for f(R) parameters from derivatives
__ 4. Constraint fIR) models
- e,g. Double Power-Law: f(R) = R(1 + aR" + BR™™)
| | a= 1301 —L9RS"
rf(R()) = R()(] + Q’Rs + ﬁR(;m) } \l‘/ ] 3
f(Rg) =1+ aln + 1)RE — B(m — 1)R;™ B =y L (LD RG,

f"(Ry) = an(n + ])R(';”l + Bm{m — 1)R(')*(l+m)

A

_ @R 14 m+ (ds/dr)R,)

f’"(R()) = an(n + 1)n — 1)R8~2

}"\{ B nl(n+ 1)(n+m)
’3 —

\

>l

_/

; — Bm(m + )(m — DR, ™. $2RI[1=n+(cbs/ by )Ro)
mll=m)n+m)
-
nin+ 11 —m(1-do/Ry) _ m= —[1—=n+(¢d3/d>)R,]
DR\ 1 +m+ (b3 /hs)R, | |
min+1)(m=1)(1-dbo/Ro) _ 1 ey r <
daRol1—n+(dhs/d2)Rg ] ' n= 5[1 + ERO =

VN (b, ba, P3) ]
daRy(1 + o/ Ry)
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mod’ 1? : Cosm
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- Cosmogrqpﬁw yammeters from S’Né‘.la go = —0.90+ 0.65,  j,=27+67,
What we have to expect from data So =365%529, I, = 1427 + 320.
A ok F < as )
- Fisher information matrix method. L e
F f "’ d0;00 ;
(

\ 2
Nsnera | Hobs (:z) = ,U-th.(zn.o HO:\ p)
R e e

- FM ingredients : { dr(z) =D1z+ D 22+ D3 2°+ D} 2* + D 2°

y i 2 Lo o 2
o(z) = J()‘m + (.. ) (0
<max

\.

g dg'
0', Z’
> % d p; dp

- Tstimating error on g: op =
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- Survey: Davis (2007) o, =038
O /02, =10%; O p=015 | : O,=54
WNonisa = 2000; T, = 0,33 o, =281
Z o = 1.74 > - 0'4 =74.0

- Snap like survey: 0 o, =008
T 3/ M2y =1%; 0, =015 0 ) 9220
Nopors = 2000; T, = 0.02 o,=48
Zmax =17 % ¢ o 4 13.7

- Ideal PanSTARRS survey: (o, =002
O 382 = 0.1%; O =015 y : 0,=02

[ — ”

Nongzs = 60000; T, = 0.02 0,=09

Zax =17 A C 0-4 =27

/

-

0 ,,=0.04

0, =0.04

0,,=0.007

g ,, = 0.008

0 ,,=0.0015

0 ,, = 0.0016



Conclusions (DE)

Extended Gravity seems a viable approach to describe the Dark Side of the-
Universe. 1t is based on a straightforward generalization of Einstein Gravity
and does not account for exotic fluids.

»  Following Starobinsky, R can be considered a “geometric” scalar field]).

" Comfortable results are obtained by matching the theory with data (SNefa,
%cfio-gafaxies, Age of the Universe, CMBR).

*  Transient dust-like Friedman solutions evolving in de Sitter- like expansion
(DE) at late times are particularly interesting (debated issue).

" Generic quintessential and DE models can be easily “mimicked” by AR)
"tﬁrougﬁ an inverse scattering yrocedure. Cosmogrcyoﬁy.

= A comprehensive cosmological model from early to [ate epochs should be achieved
by AR). LSS issues have to be carefully addressed.



Conclusions (D'M)

= Rotation curves of galaxies can be naturally reproduced, without huge
amounts of DM, thanks to the corrections to the Newton potential, which
come out in the low energy [imit.

= The baryonic Tully- Fisher relation has a natural explanation in the
framework of f{R) theories.

=  Effective haloes of elliptical galaxies are reproduced by the same
“mechanism..

= Good evidences also for galaxy clusters

Furthermore.....

= Orbital period for PSR 1913 + 16 and other binary systems in agreement”
With f(R)-gravity (probe for massive GWs?).

= Exotic stellar structures could be compatible with f(R).

= Search for EXPERIMENT UM CRUCIS



Ferpecivess | | DE& DMas curvature effects

> ‘.Matcﬁing other DE models

> Jordan Frame and Einstein Frame
> Systematic studies of rotation curves for other ga[axies
> ga[axy cluster dynamics (virial theorem, SZE, etc.)

» Luminosity Ipnﬁz;/of [ﬁa[axies in f(CR)
> Faber-Jackson & Tu }_/-Tisﬁer, Bullet Cluster

U

.
> Syswmau’c studies of PPN forma[ism




