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Gamma-Ray Bursts: The story begins

Treates Eanm’ng nuclear tests between USA and USSR in ear@ 60s

VELA Satellites: X and soft y-ray detectors
Vela 4a Event — July 2, 1967

ﬁm’gﬁ intense ﬂasﬁes qf’
y-rays

L}
o
]
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R, 1973, Astrophysical Journal, 182,
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GRBs phenomenology

* ‘Basic phenomenology
— Flashes of high energy photons in the sky (typical duration is

Ffew seconds).

— Isotropic distribution in the sky

— Cosmological origin accepted (furthest GRBs observed z ~ 8 -
billions of light-years).

— Never seen two GRBs from the same location (distructive
phenomenon?).

— ﬁExtreme@ energetic and short: tﬁefreatest amount (j: energy
Teleased in a short time (not considering the Big Bang).

— Sometimes x-n?/s and optical radiation observed after days/

“months (qﬁ'en!; ows). :




GRB observations

First detected...

— ..inearly ‘70 by milita tE/ satellites (Vela).

—~ Ongma[fy connected with Neutron Stars (NSs) in the Milky Way.
Then CGRO came...

— EGRET (10 MeV-10 GeV): Energetic Gamma-Ray Experiment ‘J'Zz[ésccyoe ~1 ﬁurst/yem'.
— BATSE (10 keV-10 MeV): ~ 1 burst per day.

— Distribution in the sky found to be isotropic. 2704 BATSE Gamma-Ray Bursts
Cosmo(ogwa[ origin? 90
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- OTL 80”15 mission Fluence, 50-300 keV (ergs cm?)

— Dedicated to GRB (x-ray follow up)
— New understanding of GRB afterglow...more open questions?
The GLAST era
Q-(igﬁ energy emission

—  Connection to low energy



Two flavours, long and short

- ‘Long' (T,,>2s) and ‘Short’ (T, < 2s) duration.

BATSE 4B Catalog
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core co[fcyase qf massive stars (M >30‘M,,,)

long GRBs
Co[fcyasar or ?@yernwa (MacFadven & Woosley 1999)
GRB simultaneous with SN’
Supranova - two-step coffcyase (Vietri & Stella 1998)

GRB delayed by few months-years

A compact oEject mergers (NS-NS, NS-BH)

short GRBs

Discriminants; host galaxies, location within host, duration,
environment, redshift distribution, ...




Collapsar model

Woosley (1993)

Scenario X: Collapsar

Initial Conditions:

@ Single Star

Mstar— Mgy

Star Evolves of Main Sequence

Wind Ejects Hyvdrogen

Envelope

He Core Collapses
& GRB Sc. X

* Very massive star that co[flqpses ina rcyoid'lfy spinning BH.
0 ﬂdénu:ﬁcaﬁon with SN explosion,




Fireball model

GRB FIREBALL MODEL

Pair e-¢* accelerated with relativistic
S}Jeecf Ey the internal pressure.

-
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“More then one initial ]au[seJ
intermittent@ yrocfuce some shells, i.e.

j?reﬁa/[f with cﬁ_’ﬁ%rent LorentzT.
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continues

Optical .

) or UV, as o.ptlcal and

® v e Furthermore

cuickly

B S the shell interact with the interstellar medium.
Ie - , .
| nterselar deceleration of the fireball
*\k f the external shock @?zrgbw)

{nternal Shocks

{Reverse Shock \
External Shock { Forward shock




The variaﬁiﬁ’ty qf the light-curve means huge energy small

Yolume and small time

Fireball ‘uf

Invented even before knowing that GRBs are
cosmological....

Issue: the fireball model does not explain the origin of the relativistic
Aflow producing the fireball itself

Fireshell model exp(ains it.

—...




% The inner engine has to create a ﬁuge amount qf energy
to accelerate ~ 105 M, to the relativistic speed

% The flux is collimated in a fet of opening angle ~5°-20°
(observation jf GRB060218 shows wider angle 37° according to the
isotropic model of the fireshell)

% Short and lbng dépemf on the duration determined Ey the inner
engine éd'z:ﬂ:erent progenitors

% Host Galaxies > young and with the strong stellar formation




Jet ﬁaﬂ3
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The fireshell model

erglow peak
emission

‘Which v asym=

Earyonic remnants
177: PEM'B-

fjoufse expansion
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2004: satellite SWIFT (~200 GRBs)

BAT > 15-150 keV
XRT > 0.2-10 keV
UVOT = 170-650 nm

BAT reveals the location of the GRB and in 20-70s wheel the system so that the event is
simultaneously followed by XRT and UVOT

Observe the afterglow in the initial phase and study the
Transition between prompt and afterglow.
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Huge isotropic Energy and Power
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GRB spectrum evolves with time within single bursts




w/anc [100-320 kov]

Hard to Sqﬁ"

evolution

phot /emA2 sec

E, 0 A1), b(t)

o " Decrease independent of the-
T I and decay of the flux




Could GRBs be used as standard candles?

What are the main yroﬁﬁams with cosmic distances?
What is the distance ladder?




—

Related issues to distance indicators

Internal errors: they are instrisic as any measurement method (e.g.
galaxy magnitude, fitting). They can be reduced by adding further
elements to the sample.

External errors: they are due to galactic extinction and absolute
calibration. Usually the carry-out higher probability to introduce
systematic error, and are more difficult to be evaluated.




Systemau’c errors

* Malmquist’s effetc *  Galactic calibration error
occurring when usin% a sample of assuming that Sun rotates on a
[imited-magnitude objects, looking plane coincident with Galacting
only at ones brigther than a given. Plane with pure circular motion
apparent maghitude
*  Galactic rotation  ‘Internal ga[axy evolution
;%/stemaﬁc redshift and blueshift on intrinsic galaxy (uminosity is
e observed spectra functon ofﬂ time and thus oj}f the

distance
« Scott’s gﬁcect
more yoyu(ated ga(axy clusters o Séy Erigﬁmess

instrinsically brighter and thus occurring when observing low-
“more visible (zz(ection effect) fuminosity galaxies



High redshift GRBs

* GRBs are extremely energetic events and are expected to be-
’\/iSiE(Q out to z ~ 15-20 (Lamb & Reichart, 2000, Ap], 536, 1), WﬁiCﬁ is

further than that obtainable by quasars (z,,,, ~ 6).

max

« Allow us to;

— Locate high redshift host galaxies.

— Map out star “f)rmau’on, since long duration GRBs are likely caused
by the core collapse of massive stars.

— Probe the environment immediately around the GRB.

— Composition of the host galaxy.

— Potential evolution of GRB properties and therefore progenitors.
— Potential use of GRBs to derive an extended z Hubble-diagram.




The overview on the existing correlations

o Amati

- Ghirlanda
 Firmani

» Liang and Zﬁang

° E@ﬁ'erglbw'fyromyt

+ Spectral ¢,

° Variaﬁi[ﬁy

e ‘Minimum rise time
» LT correlation




Fnergy scaling relation

* Radiated energy (€, or Eg) is well correlated with Spectral peak
energy (f},eak')

o Mayﬁe used as “Cosmic Distance Scale” [ike type Ia Sne

* E,..c measurement essential
» > Require large band width (at least x10°)

* BATSE found very few GRBs with E ,04£<100 keV
o Swzj:r needs HET'E or Konus fbr most events

* But, we do not know the physics yet




Fiso Vpeat COTrelation  (Amati et al 2002, Atteia et al 2003)
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FIGURE 1. Left Panel. The Epeax- Eiso correlation measured at the end of 2003 with 21 GRBs detected
by BeppoSAX (Amati et al. 2002), HETE-2 (Sakamoto et al. 2003, Lamb et al. 2003), and the IPN
(Andersen et al. 2000). Note the extent of the correlation in E;so. Right Panel. Illustration of the fact that
the ratio \/Ejso / Epeak is close to a standard candle. This ratio appears almost constant over 4-5 orders of

magnitude in E;so. The ratio \/Eiso / Epeak 1s plotted here for 20 GRBs with known redshift detected with
BeppoSAX. HETE-2, and the IPN.




Peak energy - Isotropic energy Correlation

Amati et al. 2002
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+ 21 GRBs (Batse, ’J—[ew-‘l‘l, ‘lngm[)
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"Why is the Ghirlanda relation, E, (E eaﬁ)ls
different ﬁom the Amati re[aﬂon F.., (f

0.5 7

Because of the correction of the Beaming omg[e
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The idea is Similar to
Supernovae ‘la

N V Band ~ rtheir [uminosities vary_

- "With the shape of the-
[ightcurve and with the-
colour
A%

- )
R e = “Stretching”: the-
R .
’ & Slower and.
e, mmmRN, T bluer
gy ‘“*-':\. the Brig hter
ey




What ﬁq;gpens to SNe at high z?

e The brighter- slower relation
e The Brzgﬁter-ﬁfuer relation
Deyem(s on cosmotbgy'




Wﬁy we use GRBs?

. ﬁigﬁ-z SN1a z<1.7
+ suffer intergalactic dust extinctio
_ * GRBs are detectable up to z~9
.+ Free from dust extiction
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ﬂ-ﬂ)mogeneous c{ensity
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Wind density profile =1
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GRB for Cosmology
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Linear is even better for cosmology
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A completely empirical correlation
between prompt (€, E,.,) and_
afterglow properties (t;,.,c)

(Liang & Zhang 2005)

“Nava L. et al. 2006




“Model dependent: “Model dependent:
uniform fet + wind density

“ung’fbrm fet + ﬁomogeneous c(ensit}/
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... still not convinced ? ...

A new correlation between L., £, T, 45
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GRBs + Legacy SNa
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Cosmological Constraints with the Liso-fy-‘l" 0.45 correlation

_4 1 1 L
0 0.2 0.4 0.6

Firmani et al. 2006a "




... and its evolution (even darker)

Flat Universe: W,,=1, Wp=0.27

AT T T T T T T
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-20 -1.5 —-1.0 -0.5 0.0

P=(w w2z

Firmani, Ghisellini, Ghirlanda & Avila-Reese, 2005



Calibration of the correlation ...

" — Problem: there are few events at very low redshifts

OF —--- 1acre 1 dowe reaﬂ'y need very low redshifts???

eg. 12 GRBs centered @ z=1 with a redshift
dispersion of 0.15-0.2 are sufficient to calibrate
the fy-ﬂ:‘g correlation at <1% accuracy

The same precision is expected for the same
Tumber of bursts with 0.45< z< 0.75. This result
Suggests that is not necessary a [arge samjaﬁe qf’
low z GRB:s for calibrating
~the slope of these correlations.




SN Hubble diagrams

*1997: ‘Perlmutter et al. 1997, Ap], 483,

565 .
— 7 SNe at z>0.35 .o
— Consistent with Flat & W=1 9 4
*1998/9: Perlmutter et al. 1999, Qll]aj, 517, 3 46 |
565 =
Riess et al. 1998, AY, 116, 1009 Q
— 42 & 16 SN 0.16<2<0.83 g
— Universe will expand forever a .
— Expansion is acce[emtz’ng ‘0
— “Dark Energy” is ‘pushing’ 2|
*2004: ‘Riess et al. 2004, Ap], 607, 665 0
— 10 SNe at 1<z<1.76 with HST Redshift (2)
— Deceleration=>Acceleration at z~0.46
%*2005:  Astier et al. 2005, Ap], 607, 665
— 71 SNe at z<1 WHAT 1T TOOK TO CONVI
— W=-1.023£0.090 THE COMMUNITY:
— No constraint on change of w O Deep search for problems and.
*2012-13; ﬁtt})//anp.fﬁﬁgov/ Comjg[exiﬁeg

— ~2000 SNe at z<1.7 & Confirmation by other metho



Calibration of six luminosity indicators

SPECTRAL LAG VARIABILITY PEAK PHOTON E’NERFY
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GRB Hubble afiagmm

fR‘JOR WORKS: 100000 ¢
Author (Reference)  # GRBs # Lum Ind. |
Scﬁaq‘%r (2001, three yuﬁ(ic talks) 8 GRBs 2 (t[ag,\/) ,
Schaefer (2003, ApJLett, 583, 67) 9 GRBs 2 (t(ag,\/) A 1000 |
Bloom et al. (2003, ApJ, 594, 6'74) 16 GRBs 1 (tg,} '
"Xu, Dai, Liang (2005, ApY, 633, 603) 17 GRBs1 (&,
Firmani et al. (2006, MNRAS, 360,1) 19 GRBs 1 (1,
Lang & Zﬁcmg (2005, ApJ, 633, 611)15 GRBs1 (tg,,ec 8.1
Schaefer (2007) 69 GRBs5 (t)V,Epy treay trise)

10.0

(Scﬁaq%r ggog)

Capozziello, Cardone, Dainotti, 1zzo, Ostrowsky, Willingale (2008, 2009,2010,2012):
* 69 GRBs
* ﬁ'om 0.17< 2<6.29

* 30 with SWIFT, 16 with HET'E, 8 with BATSE, 11 with KONUS, 3 with SAX, 1
With INTEGRAL

% Combine information from all 5 (uminosity indicators to get best ﬁtminosity
* ‘Must sz’muﬁuneousfy ﬁt cosmo[ogy and ﬁtminosity relations



Calibration of the correlation ...

Accuracy for individual SNe & GRBs:

o, (overall)
OBIECT Median ‘Best
SNe* 0.23 mag 0.15 mag
GRB 0.60 mag  0.21 may

*gofd’ & Silver sam])fe ﬁom Riess et al. (2004 ?l}’)j, 607, 665)

SN acﬁzanmges: GRB d?/anmges:

% 2.6X more accurate sing@ * ‘Um’clue@ covers 0.7< 2 < 6.6
* Physics of SNe is well known * No problem from extinction

—




69 GRB Hubble cfiagmm

Standard’ cosmology:

Flat Universe with W,,=0.27+0.04,
Cosmological Constant [w=-1 and unchanging for w=P/rc*]

1

Distance Modulus (mag)




Appears to be flat at z> 2.5
Standard’ cosmology:

Flat Universe with W,,=0.27+0.04,
Cosmological Constant [w=-1 and unchanging for w=P/rc*]

i

odulus (mag)
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S earc ﬁfor 6851' cosmo [Ogy

Assume Flat Universe, narginalize over W,
Assume Equation of state; w=P/rc>, let w vary as w+w'z or w+w,*z/

(1+2)

Cosmological Constant has w=-1 and w'=w,=o

W=wW,+WZ w =w 4w ¥2/(1+2)

Marginalized over Qu Marginalized over Qu
loand 2 ¢ contours 1o and 2 o contours

- © *
= 25|

1 .
2 .

0 o 3
0 Cosmological

Constant ’
-1 ! ! '1 T T
-3 -2 -1 0 -3 -2 -1 0

Cosmoﬁygica( Constant at 2.8s level Cosmoﬁagica[ Constant at 2.3s level



‘What is best 1S BEST Q,,?

Assume Flat Universe with W, = -1.4 and w = 1.3

2.5

2.0

1.5 1

1.0 1

Probability/d Qw

0.5 1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

One Sigma: 0.25< Wy, <0.59




Search the best cosmology

Assume Flat Universe with Q,,=0.27+0.04,

W=wW,+WZ w = w,4+w, *z/(1+2)

Assumed ©Q=0.27+0.04
1@, 20, 30 contours 7

Assumed Q=0.27%0.04
1o, 20, 30 contours

Gold & Silver
Supernovae 5
10,20 contours

Cosmological
Constant

Cosmological
Constant’

-1 0 3 5

_WO

-1
Wo
moﬁ)gica( Constant rgjectec( at 3.5s level Cosmoﬁagica( Constant jectecf at 3.7s level



Best ﬁt Cosmolbgy

Best Fit cosmo(ogy:
Flat Universe with Q,=0.27+0.04,
w,=-1.4, W=dw/dz = 1.3, w=P/rc>=w +w'z

Distance Modulus (mag)




First results from new method

*x GRB HUBBLE DIAGRAM FLATTENS FOR z>2.5:
Best ﬁt hasw,= -1.4 and W = 1.3
Cosmological Constant rejected at 3.55 level
In good agreement with Gold & Silver SNe
7f Dark Energy changes with time, then it is not vacuum.

energy




Questions and potential problems

* MALMQUIST BIAS:

Very difficult problem to calculate, because conditions for detecting burst  as a
function of redshift are highly inhomogenous and not well known

*x GRAVITATIONAL LENSING AMPLIFICATION AND
DEAMPLIFICATION BY FOREGROUND GALAXIES:
Any resulting bias is likely to be insignificant (Daniel Holz 2005)

* WHAT ARE EFFECTS OF EVOLUTION?
the effects will be near-zero because the GRB luminosity indicators are based on_
quantities [ike conservation of energy in jet and light travel time which do not evolve
With time or metallicity;

« while it does not matter Ef the tyjn’ca( [uminosities cﬁange with time so ﬁmg as the-
caltbration qf the relations is based on the yﬁysics qf the situation. Furthermore no
sign qf evolution with recfsﬁg’ﬁ'

o cf the Epeak - Fiso correlation (either its slope and normalisation) is found.
Ghirlanda et al. 2008 to appear on Mon Not. R. Astron. Soc.
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* NEW METHOD TO MEASURE
DARK ENERGY:

Conclusions

‘Unique information for 1.7< 2 < 6.6

* FIRST RESULTS:
69 GRBs from 0.17< 2< 7

* HUBBLE DIAGRAM FLATTENS
FOR z>2.5:
Dark Energy changes over time,
(Cosmo(ogica[ Constant rgjectwf at 3.5s)))
or Hi-z GRBs are brighter by ~3X
(Ma[mquist bias?)

* TH1S RESULT MUST BE CONFIRMED OR
DENIED BY INDEPENDENT STUDY:

Independent GRB data

(69 more HET'E & SWIFT bursts)
Qnd@}aem{ent methods

(}wrﬁa})s [Emsing or quasars...)
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