Deep Images and Source Counts: Adventures in the Lockman Hole Bill Cotton, NRAO

Collaborators:

J. Condon(PI), K. Kellerman, R. Perley, E. Fomalont NRAO N. Miller U. Maryland D. Scott, T. Vernstrom, J. V. Wall Univ. British Columbia R. Braun SKA

Motivation

• Explore unexpected result of ARCADE-2 CMB balloon experiment's excess brightness at 3 GHz.

Motivation

- Explore unexpected result of ARCADE-2 CMB balloon experiment's excess brightness
- Use upgraded JVLA sensitivity to measure faint source population

Known Radio Source Populations: AGNs

The brightest extragalactic radio sources are AGNs

Hercules A EVLA 4-9 GHz

AGNs

• The brightest AGNs are easily visible anywhere in the universe

AGNs

- The brightest AGNs are easily visible anywhere in the universe
- Only a fraction of AGNs are radio loud

AGNs

The brightest AGNs are easily visible anywhere in the universe
Only a fraction of AGNs are radio loud
Possibly a phase of all AGN activity cycles

Known Radio Source Populations: Star forming galaxies

Massive star formation leads to radio emission through cosmic rays, SNe and HII regions.

Star formation in Galaxies

Star formation generally fainter than AGN

Star formation in Galaxies

Star formation generally fainter than AGN

Galaxies more numerous than radio loud AGN

Star formation in Galaxies

- Star formation generally fainter than AGN
- Galaxies more numerous than radio loud AGN
- Fainter than ~ 1 mJy star forming galaxies dominate the radio source population

Source Counts and Cosmic Evolution

• Counts of sources as a function of flux density constrains the evolution of the population.

Source Counts and Cosmic Evolution

- Counts of sources as a function of flux density constrains the evolution of the population.
- Observed local luminosity can be used with evolution scaling laws to predict source counts

Source Counts and Cosmic Evolution

- Counts of sources as a function of flux density constrains the evolution of the population.
- Observed local luminosity can be used with evolution scaling laws to predict source counts
- Strong evolution required for source counts ruled out steady state universe

Predicted Source Counts

 Previous deep surveys give large scatter in source counts. "Cosmic variance"?

- Previous deep surveys give large scatter in source counts. "Cosmic variance"?
- Individual sources identified on high resolution images, characterized, cataloged.

- Previous deep surveys give large scatter in source counts.
- Individual sources identified on high resolution images, characterized, cataloged.
- Many corrections needed to derive source counts:
 - Completeness
 - Biases
 - Correction for source size

- Previous deep surveys give large scatter in source counts.
- Individual sources identified on high resolution images, characterized, cataloged.
- Many corrections needed to derive source counts:
 - Completeness
 - Biases
 - Correction for source size
- Different groups used different correction techniques.

 At low resolution and high sensitivity, images are "Confusion limited", i.e. Multiple sources contributing to each pixel.

- At low resolution and high sensitivity, images are "Confusion limited", i.e. Multiple sources contributing to each pixel.
- Pixel distribution is a function of source counts in the confusion

- At low resolution and high sensitivity, images are "Confusion limited", i.e. Multiple sources contributing to each pixel.
- Pixel distribution is a function of source counts in the confusion
- "P of D" analysis extracts source counts from pixel distribution.

- At low resolution and high sensitivity, images are "Confusion limited", i.e. Multiple sources contributing to each pixel.
- Pixel distribution is a function of source counts in the confusion
- "P of D" analysis extracts source counts from pixel distribution.
- Minimal corrections to extracted source counts

- At low resolution and high sensitivity, images are "Confusion limited", i.e. Multiple sources contributing to each pixel.
- Pixel distribution is a function of source counts in the confusion
- "P of D" analysis extracts source counts from pixel distribution.
- Minimal corrections to extracted source counts
- Good statistics from using many pixels.

Survey Details

- 57 hours of (partial) EVLA in S band (2-4 GHz) on a pointing in the Lockman Hole, C config.
- 1 µJy RMS image, 8" resolution
- Wideband/widefield imaging to get images in each spectral window
 - Bin data in frequency (spectral windows)
 - Joint CLEAN from weighted average residual
 - Bins individually CLEANed

Survey Details, cont'd

- Special beamshaping of the residual beam in Obit to get constant and known psf in frequency
 - Taper and Robust per SW to get dirty beam smaller than target
 - Shallow CLEAN not to distort pixel distribution.
 - After CLEAN, convolve residuals up to target size
- Derive final image correcting for spectral index, effective frequency, RMS and beamshape.

Confusion limited image

Confusion limited image detail

Source free Pixel distribution

Pixel distribution, P of D

Initially fit with power law distribution

Pixel distribution, P of D

 Then MCMC analysis constraining source counts above 50 nJy

Source Counts

Source counts

- Good agreement with theoretical expectations
- Very different results from Owen & Morrison 2008, Why?
- Same pointing center → not "cosmic variance"

Confusion v. Owen & Morrison 2008

S band image with OM sources as +

Source counts

- Very different results from Owen & Morrison 2008, Why?
- Same pointing center → not "cosmic variance"
- See same sources.
- Difference from corrections applied, source size?

Current: Source Size Distribution

- Source sizes generally determined from fitting sources in high resolution image.
- Poorly constrained at low SNR.
- Stronger sources may not well characterize fainter sources.
- Proposal to use ratio of 2.5" (B config) to 0.7" (A config) to determine source area.
- Have B resolution image
- A config. High priority this Summer

2.7" Resolution detail

Polarization

- Expect star forming galaxies to be weakly polarized
- Russ Taylor claims to have detected weak, polarized sources.
- Appear to be AGNs, 20% AGN μJy fraction?
- Need beam images to remove off-axis polarization
- A config. polarization images.

Constraints on Evolution

- Evolving all local populations with luminosity $L(z) \propto (1+z)^{4.7}$ predicts source counts
- No other adjustments
- Can be modeled as all sources in a shell at z~0.8
- Source counts very consistent with same evolutionary law for AGN and star formation

- For first time resolved star formation peak in faint source counts
- Counts are consistent with same evolution law for AGN and star formation powered sources to z~1
- Currently measuring source size distribution.

Oh Yeah

 For the ARCADE 2 3 GHz excess be due to a population of sources would require more sources than galaxies in the universe.