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CHAPTER 1

Projective properties

1. Preliminaries

1.1. Zariski decomposition. Let X be a smooth projective surface and let
D be an effective divisor of X. The Zariski decomposition of D is

D = P +N,

where both P and N are divisors with rational coefficients, P is nef, P · N = 0
and N is a sum, with positive coefficients of prime divisors Ni, such that the
intersection matrix (Ni ·Nj) on the components of its support is negative-definite.
As proved in [Laz04, Theorem 2.3.19] any effective divisor admits a unique Zariski
decomposition.

1.2. Negative curves. Now, let us assume that D is an effective divisor on
a K3 surface X and that D = P + N is its Zariski decomposition. Since the
components Ni of the support of N are prime divisors of negative self-intersection,
by adjunction formula 2g(Ni)− 2 = N2

i < 0, so that each Ni is a smooth rational
curve with N2

i = −2. Such curves are called (−2)-curves. In particular each
connected component Γ of the support of N is a union of (−2)-curves and the
intersection matrix of such curves is negative definite. Due to this condition Γ
must be a tree, since otherwise Γ contains a cycle and its components N1, . . . , Nr
satisfy (

∑
iNi)

2 = 0, a contradiction. In fact a lot more can be said about the
structure of such a Γ.

Theorem 1.2.1. Let Γ be a connected curve on a K3 surface X. Assume that
the intersection form on the prime components of Γ is negative-definite. Then the
lattice spanned by the classes of these components in Pic(X) is of type

An

Dn

E8

E7

E6
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6 1. PROJECTIVE PROPERTIES

1.3. Morphisms. Recall that given a divisor D on a projective variety X,
the complete linear series |D| is the projective space whose points are the effective
divisors D′ of X linearly equivalent to D. By means of |D| one can define a
rational map, denoted by ϕ|D| : X → Pn = |D|∗, defined by p 7→ |D − p|, where
the last symbol means the linear subspace of elements D′ ∈ |D| which contain p.
Equivalently, given a basis {s0, . . . , sn} of H0(X,OX(D)), we have

ϕ|D|(p) := (s0(p) : · · · : sn(p)).

Consider now a smooth irreducible curve C on a K3 surface X whose class [C] ∈
Pic(X) is ample. If C2 > 0, then by the Kawamata-Viehweg vanishing theo-
rem [Laz04, Theorem 4.3.1] the higher cohomology groups of OX(C) vanish. Thus

h0(OX(C)) =
C2

2
+ 2

by the Riemann-Roch theorem. It is not hard to prove that the same holds if C2 ≤
0. Hence particular the complete linear series |C| has dimension C2/2 + 1 = g(C),
where g(C) is the topological genus of C. Moreover, by adjunction formula and the
triviality of KX , the restriction of OX(C) to C is the canonical divisor KC of the
curve. Hence there is an exact sequence

(1.3.1) 0 //OX //OX(C) //OC(KC) //0.

By passing to the long exact sequence in cohomology and recalling that h1(OX) = 0,
we observe that the restriction map H0(OX(C)) → H0(OC(KC)) is surjective.
Equivalently this means that the rational map

ϕ|C| : X → Pg,

where g = g(C), defined by the complete linear series |C|, induces the canonical
embedding on all the smooth members of |C|. In particular if C is non-hyperelliptic
then ϕ is an embedding, so that C is a very ample divisor on X. More generally
we have the following.

Theorem 1.3.1. Let C be a smooth curve on a K3 surface X with C2 > 0.
Then the complete linear series |C| is base point free. The morphism ϕ|C| : X → Pg
has degree 1 or 2. Moreover it has degree 2 if and only if any smooth member of
|C| is a hyperelliptic curve.

Example 1.3.2. Let X be a K3 surface which contains a smooth curve C
with C2 = 2, whose classe [C] ∈ Pic(X) is ample. By the Riemann-Roch theorem
h0(OX(C)) = 3, that is the dimension of the complete linear series |C| is 2. By
adjunction formula C has genus 2, so that it is hyperelliptic. Hence the morphism
ϕ|C| : X → P2 is a double cover. If B ∈ |C| is a general smooth member, the
restriction of ϕ|C| to B is the canonical map of B, hence it is a double cover
branched at six points. Since ϕ|C|(B) is a line this implies that the degree of the
branch divisor of ϕ|C| is a plane curve of degree six.

1.4. Semiample divisors. We recall that a divisor D is semiample if the
complete linear series |nD| is base point free for some positive integer n, that is
for any p ∈ X there exists an element D′ ∈ |D| such that x 6∈ D′. The following
theorem shows that any nef divisor on a K3 surface is semiample, the converse
being obvious.
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Theorem 1.4.1. Let D be a nef divisor on a smooth K3 surface, then D is
semiample.

Proof. Since D is a nef divisor its class lies in the closure of the ample cone of
X by Kleiman theorem [Laz04, Theorem 1.4.23]. Hence D2 ≥ 0 and h0(OX(D)) >
1 by Riemann-Roch. Assume D2 > 0. First of all we prove that the linear series
|D| does not contain fixed components. Indeed, if E is the fixed divisor of the linear
series, then h2(OX(E)) = h0(OX(−E)) = 0, where the first equality is by Serre’s
duality and the second is because E is effective. Thus

1 = h0(OX(E)) ≥ E2

2
+ 2,

where the inequality is by Riemann-Roch, implies E2 < 0. Observe that for any nef
and big divisor P , that is P 2 > 0, we have h0(OX(P )) = P 2/2 + 2, by Riemann-
Roch and the Kawamata-Viewheg vanishing theorem. Since both D and D−E are
nef and big divisors with linear series of the same dimension, then by the previous
observation D2 = (D−E)2, so that 0 ≤ 2D·E = E2 < 0, a contradiction. Hence |D|
does not have fixed components and we conclude that D is semiample by Zariski’s
theorem [Laz04, Remark 2.1.32].

Assume now that D2 = 0. It is enough to show, as above, that |D| does not
contain fixed components. If E is the fixed part of the linear series, then E2 < 0 and
D−E is a nef divisor. Hence 0 ≤ (D−E)2 = −2D ·E+E2 < 0, a contradiction. �

It is possible to prove more in general that if D is a nef divisor on a K3 surface,
then |3D| is base point free [SD74].

2. The Mori cone

Let X be a K3 surface; recall that Pic(X) injects into H2(X,Z). Denote by
N1(X) the image of Pic(X) ⊗Z R into H2(X,R), that is the real vector space of
1-cycles modulo homological equivalence. The Mori cone of X is the closure, in the
Euclidean topology, of the cone of N1(X):

NE(X) := {
∑
i

ai[Ci] : Ci is a curve of X and ai ≥ 0}.

We will denote the Mori cone by NE(X). Since we are dealing with a surface, then
curves are also divisors, so that the Mori cone of X coincides with the closure of the
cone of effective divisors of X. A vector v of a cone V is said to span an extremal
ray of V if v can not be written as a sum v = v1 + v2 of vectors vi ∈ V which are
not multiples of v. Now observe that if E is an effective divisor such that, for any
integer n > 0, the components of any reducible element of the linear series |nE| are
linearly equivalent to a multiple of E, then the class [E] of E spans an extremal ray
of NE(X). Indeed, if [E] = x1 +x2, with x1 and x2 in NE(X), then nE ∼ D1 +D2,
for some integer n > 0, where D1 and D2 are not linearly equivalent to a multiple
of E. Hence |nE| contains a reducible element whose prime components are not all
linearly equivalent to a multiple of E, a contradiction. As a consequence, the class
of a (−2)-curve spans an extremal ray of NE(X). If ρX ≥ 2, denote by V the light
cone of X, that is:

V := {x ∈ Pic(X)Z ⊗ R : x2 ≥ 0}.
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The reason for the name “light cone” is that the Picard lattice has a quadratic form
of signature (1, ρX − 1), like the Minkowski space-time. Let V +

X be the closure of
the connected component of V − {0} which contains the nef cone.

The following theorem has been proved in [Kov94]

Theorem 2.0.2. Let X be a K3 surface with ρX ≥ 2. Then one of the following
holds:

(i) ρX = 1 and the Mori cone is generated by an ample class;
(ii) ρX = 2 and the Mori cone is generated by the classes of a (−2)-curve

and an elliptic curve;
(iii) 2 ≤ ρX ≤ 4, the surface X does not contain elliptic curves and (−2)-

curves, and the Mori cone is V +
X ;

(iv) 2 ≤ ρX ≤ 11 and the Mori cone is V +
X , which is also the closure of the

cone spanned by classes of elliptic curves;
(v) 2 ≤ ρX ≤ 20 and the Mori cone is the closure of the cone generated by

classes of (−2)-curves.

All the previous cases occur for any indicated value of ρX .

It is interesting to observe that, in case ρX ≥ 3, if X contains a (−2)-curve then
the Mori cone of X is the closure of the cone generated by the classes of (−2)-curves
of X.

Example 2.0.3. Let X be a K3 surface whose Picard lattice is isometric to the
lattice S = U ⊕ (−4). Such a K3 surface exists since Nikulin [Nik79] proved that
any even hyperbolic lattice of rank ≤ 10 can be embedded in the K3 lattice. Thus
by the global Torelli theorem S is isometric to the Picard lattice of any K3 surface
whose period ω ∈ S⊥ ⊗Z C is very general. If {e1, e2, e3} is a basis of Pic(X) with
the given intersection matrix, then the classes e1, e2−e1 and e1+e2−e3 represents,
respectively, an elliptic curve C and two (−2)-curves E1 and E2 of X. The elliptic
fibration

ϕ|C| : X → P1

does not admits reducible fibers. To see this observe that a reducible fiber is a
union of (−2)-curves whose classes are orthogonal to e1 = [C], but the square of
any element of e⊥1 = 〈e1, e3〉 is divisible by 4. Since ϕ|C does not admit reducible

fibers, then its Mordell-Weil group (this is Pic0(Xη), where Xη is the generic fiber
of ϕ|C|) is infinite and isomorphic to Z by the Shioda-Tate formula. Any element
of the Mordell-Weil group corresponds to a section of the elliptic fibration. Thus
there are infinitely many sections. These are just smooth rational curves on X, so
that Nef(X) is not polyhedral since X contains infinitely many (−2)-curves. Hence
Aut(X) is not finite. See also [Tod79, Examples 5.1] for a description of the nef
cone of X.

2.1. K3 Surfaces without (−2)-curves. If X does not contain (−2)-curves,
then any effective class x has non-negative self intersection. The main point here is:
does there exist a class x ∈ Pic(X) with x2 = 0? The theorem gives an affirmative
answer if ρX ≥ 5. In this case by Riemann-Roch x or −x is effective. Let us say
x. Thus x must span an extremal ray of the effective cone of X, since otherwise
x =

∑
i αixi, with xi classes of effective integral curves of X and αi positive rational

coefficients. From
x · (

∑
i

αixi) = x2 = 0
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and the fact thatX does not contain curves of negative self-intersection, we conclude
x = xi by the Hodge index theorem. Let [D] be a primitive generator of the ray
spanned by x in Pic(X)R, that is it has integer coefficients with greatest common
divisor 1. Since x is an extremal ray, then D is an integral curve. By adjunction
formula 2pa(D)−2 = D2 = 0, so that either D is an elliptic curve or it is a singular
rational curve. In both cases the morphism ϕ|D| : X → P1 defined by the complete
linear series |D| is an elliptic fibration, meaning with this that its general fiber is a
smooth elliptic curve. The fact that x is an extremal ray of the Mori cone implies
that the elliptic fibration ϕ|D| does not have reducible fibers.

2.2. The case ρX ≥ 12. In this case it is possible to prove [Kon86, Lemma
4.1] that there exists a class x ∈ Pic(X) with x2 = −2. By Riemann-Roch either
x or −x must be effective. Let us assume x to be effective. Then x =

∑
i αixi,

with xi classes of effective integral curves of X and αi positive rational coefficients.
From

x · (
∑
i

αixi) = x2 = −2

we deduce that x2i < 0 for some i, so that X contains the (−2)-curve whose class
is xi. According to Theorem 2.0.2 the Mori cone of X is generated by classes of
(−2)-curves.

2.3. The case ρX ≤ 2. If ρX = 1, the Mori cone is spanned by the primitive
ample class of X and there is not much to say. If ρX = 2, by Theorem 2.0.2, the
Mori cone has two extremal rays. which can be generated by the classes of two (−2)-
curves, one (−2)-curve and an elliptic curve, two elliptic curves, two non-effective
classes x1, x2 with x2i = 0. The following are four examples of Gram matrices of
Picard lattices for each of the four possibility.[

−2 4
4 −2

] [
0 1
1 0

] [
0 2
2 0

] [
4 0
0 −8

]
It is not difficult to show that each such lattice embeds into the K3 lattice ΛK3

so that by Theorem ?? there exists a K3 surface X in each case with that Picard
lattice. Moreover it is possible to give a projective model in each case. In the first
case X is a quartic surface of P3 which admit a hyperplane section which is the
union of two conics C1 and C2. Since the Ci are smooth rational curves on X, then
by adjunction formula they are (−2)-curves. Moreover two plane conics intersect
at 4 points by Bezout’s theorem.

In the second case X contains two classes x1 and x2 which intersect at one
point. One might be tempted to sat that both the xi are classes of elliptic curves
C1 and C2, but this can not be the case. Indeed if so, there would be two elliptic
fibrations on X, given by |C1| and |C2|. Since C1 ·C2 = 1, then ϕ|C1||C2 : C2 → P1

would be one to one, that is an isomorphism, a contradiction. Hence one of the
two Ci must be reducible, for example C2 = C1 + E. Now E is a (−2)-curve of
X and the Mori cone of X is spanned by the classes of E and C1. A projective
model is given by the double cover of a Hirzebruch surface Y = F4 branched along
an element of B + Γ ∈ | − 2KY |, where Γ is the (−4)-curve of Y . In this case the
class of C1 is the pul-back of the class of a element of the ruling of Y and the class
of E is the pull-back of that of Γ.

The third case is the double cover of Y = P1 × P1 branched along | − 2KY |.
The two elliptinc fibrations come from the two rulings of Y .
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Finally in the fourth case x2 ∈ 4Z for any x ∈ Pic(X) so thatX does not contain
(−2)-curves. Moreover, Moreover if e1 and e2 generate Pic(X) and x = ae1 + be2,
with a, b integers, then

x2 = 4a2 − 8b2

can not vanish, so that X does not contain elliptic curves. Hence we are in case
(iv) of Theorem 2.0.2, so that the Mori cone of X is generated by the classes of
non-effective curves.

e2

e1

2.4. Mori dream K3 surfaces. We now wish to deepen our knowledge of
K3 surfaces which admit a finitely generated Mori cone. A smooth algebraic surface
X is Mori dream if the following conditions hold:

(i) h1(OX) = 0;
(ii) Nef(X) is generated by a finite number of semiample classes.

Observe that since the nef cone is dual to the Mori cone, then condition (ii) is
equivalent to ask that the Mori cone is generated by finitely many classes of effective
curves and that each nef divisor is semiample.

Theorem 2.4.1. Let X be a K3 surface. The X is Mori dream if and only if
its automorphism group is finite.

Proof. We have already proved in Theorem 1.4.1 that on any K3 surface
every nef divisor is semiample. Recall that in the previous chapter we showed that
the homomorphism Aut(X) → O(Nef(X)) has finite kernel and cokernel. As a
consequence Aut(X) is finite if and only if O(Nef(X)) is finite. This happens if
and only if Nef(X) is polyhedral. �

Observe that if Nef(X) is polyhedral, to each maximal face F of this cone there
corresponds an extremal ray of the effective cone. This ray has to be spanned by
the class e of a curve E which is orthogonal to all the nef classes in F . If ρX ≥ 3,
then F contains at least two elements x1 and x2. Observe that (x1 + x2)2 > 0,
since Since the signature of Pic(X) is (1, ρX−1). By the same reason e2 < 0, being
orthogonal to a class of positive self intersection. hence E is a (−2)-curve. This
shows that the Mori cone of X is spanned by a finite number of (−2)-curves.

3. Cox rings

In this last section we consider Cox rings of K3 surfaces. Briefly recall the
definition of the Cox ring of X:

R(X) :=
⊕

[D]∈Pic(X)

H0(X,OX(D)).
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It is possible to show that R(X) is finitely generated if and only if X is Mori dream,
hence if and only if Aut(X) is a finite group. The action of Aut(X) can be used in
some cases to determine a presentation for R(X). In particular if ϕ ∈ Aut(X) is
a non-symplectic involution one wish to relate the Cox rings of the two surfaces of
the double covering:

π : X → Y := X/〈ϕ〉.
We know that Y is either a rational surface or an Enriques surface. If Y is an
Enriques surface, then we have an injective homomorphism Aut(Y )→ Aut(X) since
X is the universal covering of Y . It is possible to show, by means of Theorem ??,
that if Aut(Y ) is finite then Aut(X) is not finite. Hence there are no Mori dream
K3 surfaces which double cover an Enriques surface. Observe that this does not
mean that there are no Mori dream Enriques surfaces. Indeed it is possible to prove
that Y is Mori dream if and only if Aut(Y ) is finite [AHL10]. If Y is a rational
surface it is possible to relate its Cox ring with that of X in the following case.

Theorem 3.0.2. Let X be a K3 surface which admits a double cover π : X → Y
on a Mori dream rational surface Y . If π∗(Pic(Y )) has finite index in Pic(X), then
X is Mori dream. Moreover If π∗(Pic(Y )) = Pic(X), then there is an isomorphism
of Pic(X)-graded rings:

R(X) ∼= R(Y )[t]/(t2 − xB),

where xR is a defining section for the branch divisor B of π.

The proof makes use of the fact that there is an isomorphism of sheaves π∗OX ∼=
OY ⊕OY (−1/2B), where B is the branch divisor of π. By the hypothesis, if D is
a divisor of X, then D = π∗L, for some divisor L of Y . It s possible to show that
there is an isomorphism of sheaves:

OX(D) ∼= π∗OY (L)⊕
√
xB · π∗OY (L− 1/2B).

By taking global sections and observing that H0(π∗OX(L)) ∼= H0(OX(L)), one
proves the statement.

3.1. Examples of Cox rings. Consider the K3 surface X whose Picard lat-
tice has Gram matrix [

0 2
2 0

]
.

We have already seen that X is double cover of Y := P1 × P1 branched along a
smooth curve B ∈ | − 2KY |. Since the Picard lattice of Y is generated by two
classes f1, f2 of zero self intersection with f1 ·f2, if we set ei : 0π∗(fi), then {e1, e2}
is a basis of Pic(X). Hence the condition Pic(X) = π∗(Pic(Y )) holds, so that

R(X) ∼= C[x1, . . . , x4, t]/(t
2 − xB),

since the Cox ring of Y is a polynomial ring, being Y a toric variety (see [ADHL,
Chapter II]). As a second example consider the K3 surface whose Picard lattice has
Gram matrix [

0 1
1 0

]
.

As we have already explained X is double cover of a Hirzebruch surface Y = F4

branched along a smooth element B ∈ | − 2KY |. Observe that B is a union of
two disjoint curves C ∪ Γ, where Γ is the unique rational curve of self intersection
−4 of Y . Since Γ is in the branch locus of π, we have that E := π−1(Γ) is still a
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smooth rational curve, so that it is a (2)-curve. Observe that π∗Γ = 2E, so that
the condition of Theorem 3.0.2 is not satisfied since the class of [E] does not belong
to π∗(Pic(Y )). It is still possible [AHL10] to find a presentation for the Cox ring
of X:

R(X) ∼= C[x1, . . . , x4, t]/(t
2 − xC),

where one of the xi, let us say the fourth is the square root of the generator of the
Cox ring of Y which corresponds to a defining section of Γ.
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Exercises

Exercise 3.1. Let D be a nef and big divisor on a K3 surface X. Show that a
multiple of D defines a morphism X → X ′, where X ′ is a normal surface with Du
Val singularities, that is singularities whose minimal resolution is a tree of rational
curves of type An, Dn, E6, E7 or E8.

Exercise 3.2. Let D be an elliptic curve on a K3 surface. Show that the
complete linear series |D| has dimension 1.

Exercise 3.3. Let D be a divisor on a K3 surface with D2 ≥ −2. Show that
either −D or D is linearly equivalent to an effective divisor.

Exercise 3.4. Show that if D is a nef divisor on a K3 surface, with D2 = 0,
then D is linearly equivalent to nE, where E is an elliptic curve and n is a positive
integer.
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