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Lattices

1. Even lattices

A lattice is a finitely generated free abelian group Λ together with a quadratic
form q : Λ × Λ → Z. Basic invariants of a lattice Λ are its rank, defined as the
dimension of the real vector space Λ⊗Z R, and its signature, defined to be the pair
of numbers of positive and negative eigenvalues of the extension of the quadratic
form q to Λ⊗Z R. A lattice is even if q(x) ∈ 2Z for any x ∈ Λ. Recall that a lattice
is unimodular if the determinant of a Gram matrix of q with respect to a basis is
±1. An isometry of lattices is an homomorphism of abelian groups σ : Λ1 → Λ2

such that q2(σ(x)) = q1(x), for any x ∈ Λ1, where qi is the quadratic form of Λi.
A good reference for the whole section is [Dol83].

1.1. The U and E8 lattices. The U lattice is the rank two unimodular lattice
of signature (1, 1), whose Gram matrix is[

0 1
1 0

]
.

We define the E8 lattice by means of the following geometric construction. Let
π : Y → P2 be the blow-up of the projective plane at r ≤ 8 distinct general points.
The surface Y is a del Pezzo surface, that is its anticanonical class is ample, and
its Picard group is a lattice of signature (1, r). It is not difficult to see that Pic(Y )
is unimodular, as it admits a basis done by the classes of the pull-back of a line
plus the exceptional divisors, whose Gram matrix is diagonal with determinant ±1.
Inside Pic(Y ) consider the sublattice

K⊥Y := {x ∈ Pic(Y ) : x ·KY = 0}.

Since K2
Y > 0, then K⊥Y is a negative definite lattice. If we concentrate on the case

r = 8, we see that K⊥Y is the lattice spanned by the classes of the vertices of the
following diagram:

E12 E78E23 E34 E45 E56 E67

H − E1 − E2 − E3

Each vertex Eij is the class of the difference Ei−Ej of the i-th and j-th exceptional
divisor of the blow-up. The vertex H − E1 − E2 − E3 is the class of the pull-back
of a line minus the first three exceptional divisors. Finally each edge represents an
intersection between the classes of the corresponding vertices. For example we have
an edge from E12 to E23 since (E1 − E2) · (E2 − E3) = −E2

2 = 1. The vertices of
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6 LATTICES

the above picture form a basis of the lattice. Its Gram matrix with respect to the
given basis is 

−2 0 1 0 0 0 0 0
0 −2 0 1 0 0 0 0
1 0 −2 1 0 0 0 0
0 1 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2


.

It is called the E8-lattice. Since the previous matrix has determinant 1, the E8-
lattice is unimodular.

1.2. The K3 lattice. Whenever we have two lattices Λ1 and Λ2, we can form
their direct sum Λ1 ⊕ Λ2. This is a lattice with respect to the product (x1, x2) ·
(y1, y2) := x1 · y1 + x2 · y2. With Λn we wil mean the direct sum of n copies of Λ.
Recall the following theorem of J. Milnor.

Theorem 1.2.1 ([Mil58]). Let Λ be an indefinite unimodular lattice. If Λ
is even, then Λ ∼= E8(±1)m ⊕ Un for some m and n integers. If Λ is odd, then
Λ ∼= (1)m ⊕ (−1)n for some m and n integers.

A remark about notation is due here. Our notation for the lattice E8 is not
the standard one adopted in the theory of Lie Groups. To relate with this notation
we should write E8(−1) instead, meaning with this the lattice whose entries of
the Gram matrix are the opposite of those that we have given for our E8. As a
consequence of the previous theorem we have the following.

Proposition 1.2.2. The K3 lattice ΛK3 is isometric to E2
8 ⊕ U3.

Proof. Since both U and E8 are unimodular and even, then also their sum
is. Moreover the lattice E2

8 ⊕ U3 has signature (3, 19), so that it is not definite.
Hence we conclude by Theorem 1.2.1, recalling that the K3 lattice ΛK3, which is
isomorphic to H2(X,Z) for any K3 surface X, is even unimodular with signature
(3, 19). �

1.3. The discriminant group. Given a lattice Λ we define its dual lattice
to be the subset of elements of Λ ⊗Z Q which have integer intersection with any
element of Λ. In symbols it is:

Λ∗ := {x ∈ Λ⊗Z Q : x · z ∈ Z for any z in Λ}.
Observe that the dual lattice may be not a lattice with respect to our original
definition, since it can contain elements whose intersection is not integer. By abuse
of language we will keep calling it lattice. For example consider the rank one lattice
whose Gram matrix is (2). Then its dual lattice has Gram matrix (1/2). With abuse
of language we will still call it lattice. Given a non-degenerate even lattice Λ, its
discriminant group is the quotient

d(Λ) := Λ∗/Λ

equipped with the quadratic form qΛ : d(Λ)→ Q/2Z, induced by the quadratic form
q on Λ. Observe that if M is a Gram matrix for Λ, then the order of the discriminant
group d(Λ) is the absolute value of the determinant of M . In particular Λ∗ = Λ if
and only if Λ is unimodular.
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Example 1.3.1. Consider the rank 2 lattice Λ whose Gram matrix with respect
to a basis {e1, e2} is

M :=

[
−2 1

1 −2

]
.

The vector v := (e1− e2)/3 ∈ Λ⊗ZQ has integer intersection with e1 and e2, hence
with all the elements of Λ, so that v ∈ Λ∗. Since M has determinant 3, then the
discriminant group d(Λ) has order three by the previous observation, so that it is
generated by v. Since qd(v) = −2/3, a Gram matrix for the discriminant is (−2/3).

1.4. Primitive embeddings. An inclusion of lattices Λ1 ⊂ Λ is a primitive
embedding if the quotient Λ/Λ1 is a torsion-free abelian group. For example if Λ is
a lattice with basis {e1, e2}, then the sublattice Λ1 spanned by {e1 + e2, e1 − e2}
is not primitive in Λ, as the quotient Λ/Λ1

∼= Z/2Z. Given a sublattice Λ1 ⊂ Λ we
define its orthogonal lattice to be Λ⊥1 := {x ∈ Λ : x ·y = 0 for any y ∈ Λ1}. Observe
that Λ⊥1 is always primitive in Λ.

Proposition 1.4.1. Let Λ be a unimodular lattice, Λ1 ⊂ Λ be a primitive
embedding and Λ2 := Λ⊥1 be its orthogonal complement. Then, for i = 1, 2, there
are natural isomorphisms of abelian groups

γi : Λ/(Λ1 ⊕ Λ2)→ d(Λi).

In particular d(Λ1) ∼= d(Λ2).

Proof. First of all observe that an element x ∈ Λ can be written in a unique
way as x = x1 + x2, with xi ∈ Λ∗i , since Λ1 ⊕ Λ2 has finite index in Λ. Consider
now the homomorphism ϕi : Λ → Λ∗i defined by ϕi(x) = xi. We want to prove
that it is surjective. Since Λi is primitive in Λ, then the inclusion map i : Λi → Λ
admits a projection π : Λ → Λi, that is π ◦ i = id. This implies that the map
i∗ : Λ∗ → Λ∗i , which coincides with ϕi since Λ is unimodular, is surjective. Moreover
if for example ϕ2(z) = 0, then z ∈ Λ⊥2 = Λ1, since Λ1 is primitive in Λ. Hence we
get an isomorphism of abelian groups Λ/Λ1 → Λ∗2 and similarly exchanging 1 with
2. Hence the induced maps Λ/(Λ1 ⊕ Λ2)→ Λ∗i /Λi = d(Λi) are isomorphisms. �

1.5. Lifting isometries. Consider now a primitive embedding L ⊂ Λ of non-
degenerate even lattices of the same rank. This gives inclusions L ⊂ Λ ⊂ Λ∗ ⊂ L∗.
The quadratic form qL on d(L) restricts to the null form on Λ/L since q(x) is an
even integer for any x ∈ Λ. On the other hand, if we have an isotropic subgroup H
of d(L), that is a subgroup such that qL|H ≡ 0, then there exists a non degenerate
lattice Λ ⊃ L such that Λ/L ∼= H. Hence there is a bijection

{Λ : Λ ⊃ L with rk(Λ) = rk(L)} ↔ {Subgroups H ⊂ d(L) : qL|H ≡ 0}.

We are interested in understanding when an isometry σ of such an L extends to an
isometry η of a lattice Λ ⊃ L of the same rank. Observe that an isometry σ of L
induces an isometry of its dual lattice L∗, which in turns gives an isometry σ∗ of
the discriminant lattice d(L). Consider the inclusions

L ⊂ Λ ⊂ Λ∗ ⊂ L∗.

It is not difficult to show that σ admits an extension η if and only if σ∗(Λ/L) = Λ/L.
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1.6. Gluing isometries. We have already seen by Proposition 1.4.1 that
given a primitive sublattice Λ1 of a unimodular lattice Λ and its orthogonal Λ2,
there is a natural isomorphism γ : d(Λ1) → d(Λ2) which allows us to identify the
two discriminant groups. Now we consider when a pair of isometries of Λ1 and Λ2

give an isometry of Λ. More precisely we have the following.

Proposition 1.6.1. Let Λ1 ⊂ Λ be a primitive sublattice of a unimodular lattice
and let Λ2 := Λ⊥1 be its orthogonal sublattice. Let σ1 and σ2 be two isometries of
Λ1 and Λ2 respectively. Then the following are equivalent.

(i) There exists a unique isometry σ of Λ such that σ|Λ1 = σ1 and σ|Λ2 = σ2.
(ii) If σ∗i is the isometry of the discriminant lattice induced by σi, then the

following diagram is commutative

d(Λ1)
γ //

σ∗1
��

d(Λ2)

σ∗2
��

d(Λ1)
γ
// d(Λ2).

Proof. Recall that the elements of the quotient group H := Λ/(Λ1 ⊕ Λ2) are
of the form x+ γ(x), with x ∈ d(Λ1). Assume that (i) holds. Then σ∗(x+ γ(x)) =
σ∗1(x) + σ∗2(γ(x)) is an element of H, so that σ∗2(γ(x)) = γ(σ∗1(x)), which proves
(ii).

Assume now that (ii) holds. Then given an element x+γ(x) of H we have that
(σ∗1 ⊕ σ∗2)(x + γ(x)) = σ∗1(x) + σ∗2(γ(x)) = σ∗1(x) + γ(σ∗1(x)) is again in H. Hence
we conclude by our previous discussion. �

As a last remark, observe that the two quadratic forms qΛ1
and qΛ2

on the two
discriminant groups are related. If x + γ(x) is an element of Λ/(Λ1 ⊕ Λ2), then
0 = q(x+ γ(x)) = qΛ1(x) + qΛ2(γ(x)). Hence we have

qΛ1
= −qΛ2

◦ γ.

2. Automorphisms

Now we want to apply our knowledges of even lattices and Torelli theorem to
the study of automorphisms of K3 surfaces. To this aim we will denote by Aut(X)
the group of automorphisms of X and by Aut(X)0 the subgroup of Aut(X) which
induces the identity on the Picard group. Given an automorphism ϕ of X, denote
by ϕ∗ its action on H2(X,Z). If Φ is a marking for X, we get a commutative
diagram:

ΛK3
σ // ΛK3

H2(X,Z)

Φ

OO

ϕ∗
// H2(X,Z)

Φ

OO

where σ is an isometry of the K3 lattice ΛK3 which maps the period line Cω =
Φ(CωX) into itself and preserves the image of the nef cone. Conversely, given such
a σ, by the global Torelli theorem, there exists a unique automorphism ϕ of X such
that σ = ϕ∗. Hence, after identifying H2(X,Z) with the K3 lattice ΛK3, we have

Aut(X) = {σ ∈ O(ΛK3) : σ(CωX) = CωX , σ preserves the ample cone of X}.
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2.1. The transcendental lattice. If we denote by S ⊂ ΛK3 the Picard lattice
of X and by T := S⊥ its transcendental lattice, then we can apply the results
of the previous section to construct automorphisms of a given X. Observe that
ωX ∈ T ⊗Z C.

Example 2.1.1. Assume that S is isomorphic to U . Since S is unimodular,
then also T is. Thus T ∼= U2 ⊕ E2

8 , by Theorem 1.2.1. Let σT = − id and σS =
id. Since the discriminant groups of S and T are trivial, then the hypothesis of
Proposition 1.6.1 is automatically satisfied, so that there exists an isometry σ of
ΛK3 inducing both σS and σT . Moreover σ(ωX) = −ωX and σ is the identity on
the whole Picard lattice, so that in particular it preserves the nef cone. Whence
there exists an isomorphism ϕ of X which induces σ in cohomology. It is possible
to prove that the quotient surface Y := X/〈ϕ〉 is smooth projective. In particular,
since ωX is not preserved by ϕ∗, then H2,0(Y ) = (0). Moreover the Picard lattice
of Y has rank 2. Hence by the classification of smooth algebraic surfaces Y is a
rational surface. In the next chapter we will see that Y is a Hirzebruch surface F4.

2.2. Symplectic automorphisms. Given an automorphism ϕ of a K3 sur-
face X it must preserve the period line. Hence we have

ϕ∗(ωX) = ζ ωX ,

for some complex number ζ. if ζ = 1, the automorphism ϕ is symplectic and non-
symplectic otherwise. Assume that ϕ is symplectic. Given an element z ∈ T in the
transcendental lattice we have ϕ∗(z) · ωX = z · ϕ∗(ωX) = z · ωX , so that ϕ∗(z)− z
is orthogonal to the period ωX . hence ϕ∗(z) − z belongs to both the Picard and
the transcendental lattices of X so that ϕ∗(z)− z = 0. Thus

ϕ∗|T = id .

On the other hand if ϕ is an automorphism which induces the identity on the
transcendental lattice, then it is obviously symplectic as ωX ∈ T ⊗ C.

If we denote by G(X) the subgroup of Aut(X) whose elements are symplectic
automorphisms, then we get an exact sequence

(2.2.1) 0 //G(X) //Aut(X) //Aut(X)|CωX
//0.

Mukai proved in [Muk88] that if G(X) is finite then it is isomorphic to a subgroup
of the Mathieu group M23.

2.3. Nikulin involutions. An important example of symplectic automor-
phism is the case of involutions, that is ϕ2 = id. These are also called Nikulin
involutions, after the work of Nikulin [Nik79]. In this case the only possible eigen-
values of ϕ∗ are ±1. We have already seen that ϕ∗ restricts to the identity on the
transcendental lattice T . This implies that the induced action of the discriminant
lattice d(T ) is the identity. Hence ϕ∗|S must induce the identity on d(S), where S
is the Picard lattice. Observe that if (z1, z2) is a fixed point, in local coordinates,
of a Nikulin involution ϕ, then ϕ(z1, z2) = (−z1,−z2) since ϕ∗(ωX) = ωX , where
ωX = αdz1 ∧ dz2 in local coordinates. Thus any such fixed point is isolate. By
applying the holomorphic Lefschetz fixed point formula [EoMa]:∑

p∈Fix(ϕ)

1

det(I − dϕp)
=

2∑
q=0

(−1)q Tr(ϕ∗|H0,q(X))
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we conclude that ϕ has exactly 8 fixed points, since the right hand side has just two
summands equal to 1, while the left hand side has n summands equal to 1/4, where
n is the number of fixed points of ϕ. In particular the quotient surface Y = X/〈ϕ〉 is
singular exactly at the images of these points, where it has ordinary double points.
A minimal resolution of singularities Y ′ → Y gives another K3 surface.

2.4. 2-elementary lattices. A lattice is 2-elementary if its discriminant group
is isomorphic to a direct sum of copies of Z/2Z. Let X be a K3 surface with 2-
elementary Picard lattice, and let S ⊂ ΛK3 be the image of the Picard lattice via a
marking so that

d(S) ∼= (Z/2Z)r.

If σS is an involution of S then the corresponding σ∗S acts as the identity on the
discriminant group d(S), since σ∗S(x) = ±x = x. Hence by Proposition 1.6.1 there
is an isometry σ of the K3 lattice ΛK3 which induces σS on S and σT = id on T .
Thus as soon as σ∗S preserves the nef cone, it induces an automorphism of X. Since
the eigenvalues of σS are ±1, then we are just asking for the ample cone of X to
have non-empty intersection with the eigenspace of σS corresponding to eigenvalue
1. In particular we have

{Nikulin involutions of X} = {σS ∈ O(S) : σS(Nef(X)) = Nef(X)}.

Example 2.4.1. As an explicit example one can consider the involution of the
Fermat quartic surface V (x4

0 + x4
1 + x4

2 + x4
3) given by (x0 : x1 : x2 : x3) 7→ (−x0 :

−x1 : x2 : x3), a direct calculation shows that it is symplectic and its fixed points
are (0 : 0 : −ζ : 1), (0 : 0 : ζ : 1), (0 : 0 : −ζ3 : 1), (0 : 0 : ζ3 : 1), (−ζ : 1 : 0 : 0),
(ζ : 1 : 0 : 0), (−ζ3 : 1 : 0 : 0), (ζ3 : 1 : 0 : 0), where ζ is a primitive 8-th root of
unity.

2.5. Non-symplectic automorphisms. Given an automorphism ϕ of a K3
surface X, it induces an isometry ϕ∗ of the transcendental lattice T . This gives
a homomorphism γ : Aut(X) → O(T ) whose kernel is the subgroup of symplectic
automorphisms G(X), as we have already observed. Now we are interested in the
image of the previous homomorphism.

Theorem 2.5.1. Let X be a K3 surface with transcendental lattice T . The im-
age of the homomorphism Aut(X)→ O(T ) is a finite group. In particular Aut(X)
is finite if and only if G(X) is finite.

Proof. Let σ be the image of an automorphism ϕ of X. Then σ preserves the
two-dimensional complex vector space 〈ωX , ω̄X〉 and its orthogonal. The restriction
of the quadratic form to both spaces is definite (positive on the first and negative
on the second). Hence the eigenvalues of σ have module 1. On the other hand
σ is an isometry of an integer lattice T , so its eigenvalues are algebraic integers.
Thus they are roots of unity. Since the degree of the characteristic polynomial of
σ equals the rank of T , in particular it is bounded, then only a finite number of
roots of unity can appear as eigenvalues of σ. Thus the representation of Aut(X)
on CωX , given by (2.2.1), assumes only a finite number of roots of unity. Hence
we get the statement. �

Given a non-symplectic automorphism ϕ of a K3 surface X we know that
ϕ∗(ωX) = ζ ωX for some ζ 6= 1. If ϕ has finite order p, then ζ must be a p-th root
of unity, non necessarily primitive since some proper power of ϕ can be symplectic.
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It is possible to prove [MO98] that the transcendental lattice T has the structure
of free Z[ζ]-module induced by the multiplication ζ · x := ϕ∗(x).

Example 2.5.2. Let X be a K3 surface whose Picard lattice S has rank 20, so
that the transcendental lattice T has rank 2. If ϕ is a non-symplectic automorphism
of X of finite order, then its action on the transcendental lattice T is represented by
a 2×2 matrix with integer entries. Thus the eigenvalue ζ of σ := ϕ∗ relative to ωX
is a root of unity which lives in a degree 2 extension of Q. Thus ζ ∈ {−1, ε, ε2,±i},
where ε is a primitive third root of unity. Assume ζ = ε, and let {e, σ(e)} be
a basis of the transcendental lattice T . If e2 = 2n, then, by using the fact that
σ2 + σ+ id = 0, we get e · σ(e) = σ(e) · σ2(e) = σ(e) · (−e− σ(e)) = −e · σ(e)− 2n,
so that e · σ(e) = −n. One can reason in a similar way when ζ = i obtaining the
Gram matrices [

2n −n
−n 2n

] [
2n 0

0 2n

]
of transcendental lattices which admit respectively a non-symplectic involution of
order three and a non-symplectic involution of order four (acting on the period as
the multiplication by i, that is ϕ2 is still non-symplectic). As an example, consider
the Fermat surfaceX. In Exercise ?? you showed that the lines ofX span a lattice of
rank 20. It is not hard to show that the discriminant group is (Z/8Z)2. Observe that
X admits non-symplectic automorphisms of order four, like for example (x0 : x1 :
x2 : x3) 7→ (i x0 : x1 : x2 : x3). Hence by our previous argument the transcendental
lattice of X is diagonal with eigenvalues 2n. In particular its determinant 4n2 | 64,
so that n ∈ {1, 2, 4}. It is possible to show that n = 4, so that the transcendental
lattice of X has Gram matrix: [

8 0
0 8

]
.

We conclude by observing that since T has determinant 64, which is not divisi-
ble by 3, then by our previous observations X does not admit a non-symplectic
automorphism of order three.

Non-symplectic automorphisms of order two have been extensively studied.
In particular if ϕ ∈ Aut(X) is such an automorphism, then the quotient surface
Y := X/〈ϕ〉 is either an Enriques surface (if ϕ does not have fixed points) or a
rational surface. In the next section we will analyze the case of Enriques surfaces
in more detail (see also Example 2.1.1).

2.6. The Weyl group. An element e of a lattice S is a root if e2 = −2. Given
a root e ∈ S define the Picard-Lefschetz reflection associated to e as the isometry
se : S → S given by x 7→ x+ (x · e) e. The Weyl group of the lattice S is:

W(S) := 〈se : e is a root of ΛK3〉.

If X is a K3 surface, then no element of the Weyl group of the Picard lattice S
can be induced by an automorphism. Indeed se(e) = −e and it is not difficult to
show, as a consequence of the Riemann-Roch theorem, that either e or −e has to
be an effective class, but an automorphism can not map an effective class into its
(non-effective) opposite. Also, if h is an ample class of X and e is effective, then
h ·e > 0, so that se(h) ·e < 0, which implies se(h) non-ample. The effect of applying
a Picard-Lefschetz reflection with respect to a root e is to make a reflection with
respect to the hyperplane e⊥. This reflection moves the whole ample cone, by our
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previous observation. It can be proved that the closure of the ample cone, that is
the nef cone Nef(X), is a fundamental chamber for the action of W := W(Pic(X))
on the Picard lattice, meaning with this that W ·Nef(X) defines a decomposition
of the positive light cone {x ∈ Pic(X)⊗C : x2 > 0 and x ·h > 0 with h ample} into
chambers which are congruent to Nef(X) and W acts freely and transitively on this
set of chambers. On the other hand an isometry of the Picard lattice coming from
an automorphism clearly preserves the nef cone. Hence if we denote by O(Nef(X))
the isometries of Pic(X) which preserve the nef cone, we have a map

Aut(X)→ O(Nef(X)).

We want to show that this map has finite kernel and cokernel. The first is an
immediate consequence of Theorem 2.5.1. To prove the second, observe that the set
of σ ∈ O(Nef(X)) which induce the identity on the discriminant lattice d(Pic(X))
has finite index in O(Nef(X)). Each such σ admits a lifting to an isometry σ′ of
H2(X,Z), just choosing the identity on the transcendental lattice. By the Global
Torelli Theorem, σ′ is induced by an automorphism of X, since σ′ preserves both
the period and the nef cone of X. This proves what claimed.

2.7. Finite automorphisms groups. Observe that W is a normal subgroup
of O(Pic(X)). Moreover an element σ ∈ O(Pic(X)) preserves the set of roots of
Pic(X), so that it moves the nef cone into one of the chambers in the orbit of the
action of the Weyl group on the nef cone. Thus there exists an element s ∈W such
that σ(Nef(X)) = s(Nef(X)). In other words O(Pic(X)) is a semidirect product of
W with O(Nef(X)), which gives

O(Pic(X))
.
= W o Aut(X),

where the symbol
.
= means isomorphism “up to a finite group”. In particular

we have the equivalence between the first two conditions of the following [Dol08,
Corollary 5.1]

Theorem 2.7.1. Let X be a K3 surface. Then the following are equivalent:

(i) Aut(X) is finite;
(ii) the Weyl group W of Pic(X) has finite index in O(Pic(X));
(iii) Nef(X) is polyhedral with maximal faces orthogonal to smooth rational

curves of X.

A main ingredient for proving the equivalence (i) ⇐⇒ (iii) is to show that
Aut(X) acts on the nef cone with a polyhedral fundamental domain. By using the
previous theorem it is possible to classify all the Picard lattices of K3 surfaces which
admit a finite automorphism group (see [Nik79,Nik75,Nik79]). The number n
of these lattices for any Picard rank ρX is given in the following table (see [Dol83,
Theorem 2.2.2]).

ρX 3 4 5− 6 7 8 9 10 11− 12 13− 14 15− 19 20

n 27 17 10 9 12 10 9 4 3 1 0

The great part of these lattices are 2-elementary, that is the discriminant group is
a sum of copies of Z/2Z. This is related with the fact that a K3 surface X with
that Picard lattice admits a non-symplectic involution.

Example 2.7.2. Let X be a K3 surface whose Picard lattice is isometric to
the lattice S = U ⊕ (−2). Such a K3 surface exists since Nikulin [Nik79] proved
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that any even hyperbolic lattice of rank ≤ 10 can be embedded in the K3 lattice.
Thus by the global Torelli theorem S is isometric to the Picard lattice of any K3
surface whose period ω ∈ S⊥ ⊗Z C is very general. Since d(S⊥) ∼= d(S) ∼= Z/2Z,
then the pair (idS ,− idS⊥) induces an isometry σ of the K3 lattice. By the global
Torelli theorem σ = ϕ∗, where ϕ is a non-symplectic involution of X. This gives a
double cover

π : X → Y = X/〈ϕ〉,
with Y smooth toric surface. Since π∗(Pic(Y )) has finite index in Pic(X), the
nef cone of X is pull-back of the nef cone of Y . The last cone is polyhedral with
maximal faces orthogonal to classes of rational curves. Hence the same holds for
Nef(X) so that Aut(X) is finite by Theorem 2.7.1.

3. Enriques surfaces

An Enriques surface is a smooth projective surface Y with H1(Y,OY ) trivial,
2KY ∼ OY and KY not linearly equivalent to zero.

3.1. Topological invariants. If Y is an Enriques surface, then from the ex-
ponential sequence and h1(OY ) = 0 we deduce that both H1(X,Z) and H3(X,Z)
have zero rank. Moreover the first group is trivial since it is always torsion-free. Now
recall that TorsH1(X,Z) ∼= TorsH2(X,Z) ∼= TorsH2(X,Z), so that it is enough to
determine the first group. Since the class of KX is non trivial but 2KX ∼ 0, then
[KX ] is a 2-torsion element of Pic(X) which gives 2-torsion element of H2(X,Z)
by the injectivity of the map τ in the exponential sequence of Y . By the previous
isomorphisms between torsion groups we deduce that H1(X,Z) contains a 2-torsion
element which in turn implies that π1(Y ) contains such an element. Hence Y admits
an unbranched double covering

π : X → Y,

where X is a compact complex surface with KX
∼= π∗KY ∼ 0 and h1(OX) = 0.

Thus X is a K3 surface. In particular π1(Y ) ∼= Z/2Z since X is simply connected.
Hence

TorsH2(Y,Z) = Z/2Z
is generated by the class of KY . By Noether formula e(Y ) = 12(χ(OY )+K2

Y ) = 12,
since KY is numerically trivial, h1(OY ) = 0 and h2(OY ) = h0(KY ) = 0, where the
last equality is due to the fact that KY is not linearly equivalent to zero. Hence
H2(Y,Z)/Tors is a unimodular lattice of rank 10 which, by Poincaré duality and
the universal coefficient theorem. Moreover H2(Y,Z) ∼= Pic(Y ), by the exponential
sequence. Hence it is an even lattice by the adjunction formula and the fact that
KX is numerically trivial. Hence the signature of H2(Y,Z) is (1, 9) by the Hodge
index theorem. Thus by Milnor theorem 1.2.1 this lattice has to be U ⊕ E8. We
summarize the previous observations in the following proposition.

Proposition 3.1.1. Let Y be an Enriques surface. Then Pic(Y ) ∼= Λ⊕Z/2Z,
where Λ is isomorphic to the rank 10 even unimodular lattice U ⊕ E8.

3.2. The Enriques lattice. Let Y be an Enriques surface. The Picard lattice
of the K3 surface X, in the double cover π : X → Y , contains the pull-back
π∗ Pic(Y ). This is the following 2-elementary lattice called the Enriques lattice:

ΛEn := U(2)⊕ E8(2).



14 LATTICES

By the global Torelli theorem the moduli space of Enriques surfaces is birational
to the moduli space of pairs (X,σ), where X is a K3 surface such that Pic(X)
contains a lattice isomorphic to ΛEn and σ is a non-symplectic involution whose
induced homomorphism σ∗ on Pic(X) is the identity on ΛEn.

3.3. Projective constructions. LetQ = P1×P1 be a smooth quadric surface
of P3. Consider the involution τ of Q given by

((x0 : x1), (y0 : y1)) 7→ ((x0 : −x1), (y0 : −y1)).

It has 4 fixed points p1, p2, p3, p4. Choose now an irreducible curve B of Q cut
out by a quartic surface, that is B has class (4, 4) in Pic(Q), which passes through
the pi’s and is invariant with respect to τ . It is possible to show, by using the
Riemann-Hurwitz formula, that the double cover of Y branched along B is a K3
surface X. Due to our choice of B the involution τ lifts to an involution τ ′ of X.
If ν is the double cover automorphism of X → Q, then g = ν ◦ τ ′ is an involution
of X without fixed points. The quotient surface Y = X/〈g〉 is an Enriques surface.
We summarize the construction in the following diagram

X
τ ′ //

/g

��

X

/ν

��
Y P1 × P1

Remark 3.3.1. The very general Enriques surface Y is double covered by a
K3 surface X whose Picard lattice is isomorphic to U(2)⊕E8(2). Since an element
x of this lattice has square x2 ∈ 4Z, then X does not contain (−2)-curves, so that
the same is true for Y .

Now, if Y is not very general then the Picard lattice of the K3 surface X which
double covers Y can have rank > 10 so that X may contain a (−2)-curve C. The
image Γ of C in Y is a (−2)-curve of Y . Observe that even if the Picard rank of
X is bigger than 10, that of Y remains constant, since any Enriques surface has
Picard lattice of rank 10. What happened is that the class of Γ, which in the very
general case was not effective, now becomes effective. Hence deforming an Enriques
surface one expects to change the shape of the cone of effective divisors without
changing the lattice structure on the Picard lattice.

3.4. Automorphisms. We conclude the section by discussing finite automor-
phism groups of Enriques surfaces. If ψ is an automorphism of an Enriques surface
Y and π : X → Y is the K3 double covering, then ψ ◦ π lifts to a covering auto-
morphism ϕ ∈ Aut(X), since X is simply connected. This means that if σ is the
involution of X which exchanges the two sheets of the covering π, then σ◦ϕ = ϕ◦σ.
On the other hand, any automorphism ϕ of X which commutes with σ induces an
automorphism of Y . Hence we have an isomorphism

Aut(Y )→ {ϕ ∈ Aut(X) : ϕ ◦ σ = σ ◦ ϕ}.

This representation of Aut(Y ) into a subgroup of automorphisms of a K3 surface,
allows one to use the global Torelli theorem to classify which Y admit a finite
automorphism group. The complete result, found by Kondo, is contained in the
following theorem.
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Theorem 3.4.1 ([Kon86]). Let Y be an Enriques surface whose automorphism
group is finite. Then the transcendental lattice TX of the general K3 surface X
which double covers Y belongs to the following list.

type TX Aut(Y )

I

0 1 0
1 0 0
0 0 4

 D4

II

0 1 0
1 0 0
0 0 8

 S4

III

[
4 0
0 4

]
D4 n (Z/2Z)4

IV

[
4 0
0 4

]
N n (Z/2Z)4

V

[
4 2
2 4

]
S4 n Z/2Z

VI

[
4 1
1 4

]
S5

VII

[
4 2
2 6

]
S5
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Exercises

Exercise 3.1. Let L ⊂ Λ be an inclusion of non-degenerate even lattices. Show
that L⊥ is primitive in Λ and that (L⊥)⊥ = L if and only if L is primitive in Λ.

Exercise 3.2. Let Λ1 and Λ2 be non-degenerate even lattices. Prove that
d(Λ1 ⊕ Λ2) = d(Λ1)⊕ d(Λ2).

Exercise 3.3. Let L be a non-degenerate even lattice and let H be a subgroup
of its discriminant d(L) such that qL|H ∼= 0. Show that Λ := {x ∈ L ⊗Z Q : x
mod L ∈ H} is a lattice which contains L and such that Λ/L ∼= H.

Exercise 3.4. Let L be the lattice (−2)16 with basis {e1, . . . , e16}. Consider
the set K of affine functions (Z/2Z)16 → Z/2Z. Find the discriminant group of the
Kummer lattice:

ΛKm :=

{
1

2

∑
i

a(i)ei : a ∈ K

}
.
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