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Preliminaries on algebraic surfaces

With the word surface we will always mean a smooth compact complex con-
nected surface. Most of the time we will be interested in projective surfaces, even if
sometimes we will deal with non-projective K3 surfaces, when studying the period
domain of such surfaces.

1. Geometry

1.1. Divisors. By a divisor on a smooth compact complex variety X we mean
a formal finite sum D :=

∑
i aiCi, where the ai are integers and the Ci are irre-

ducible hypersurfaces of X. The support of D is the union ∪iCi. The divisor D is
effective if all the ai ≥ 0. We say that the divisor is prime if it contains just one
summand with coefficient 1. In this case we will often identify the divisor with the
hypersurface itself. We recall that given a rational function f on X its principal
divisor is

div(f) :=
∑
C⊂X

νC(f)C,

where the sum runs over all the hypersurfaces in X and νC(f) ∈ Z is the order
of zero/pole of f at C. Two divisors D and D′ of X are linearly equivalent if
D −D′ = div(f) for some rational function f on X. In this case we write D ∼ D′
to denote that D is linearly equivalent to D′. The set of divisors of X form a free
abelian group denoted by Div(X). It contains the subgroup PDiv(X) of principal
divisors. The quotient

Pic(X) := Div(X)/PDiv(X)

is the Picard group of X. Elements of the Picard group will be called classes.

Example 1.1.1. As easy examples one can keep in mind Pic(Pn) = Z[H], where
H is a hyperplane, and Pic(P1 × P1) = Z[F1] ⊕ Z[F2], where each Fi is a fiber of
the i-th projection πi : P1 × P1 → P1.

1.2. Intersection of divisors. Given a divisor D on a surface X there exists
an open covering {Ui} of X such that the restriction of D to each Ui is a principal
divisor div(fi). Given an irreducible curve C of X, not contained in the support of
D, we define the restriction D|C to be the divisor of C locally defined by div(fi|C)
on the open subset Ui ∩ C of C. Given a curve C and a divisor D on a surface X
their intersection is the number:

D · C := deg(D|C),

where the right hand side is the degree of a divisor on a curve. Observe that from
the previous definition we immediately have D ·C = D′ ·C if D is linearly equivalent
to D′ and the support of D′ does not contain C. We use this property to define the
intersection D · C without restrictions on D: if the support of D contains C, then
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6 PRELIMINARIES ON ALGEBRAIC SURFACES

we choose a D′ = D + div(f), where f is a rational function such that −νC(f) is
equal to the multiplicity of D at C, and define D · C := D′ · C. The intersection
number of two divisors is defined as D ·

∑
i aiCi :=

∑
i aiD · Ci. It is possible to

prove that A ·B = B ·A for any pair of divisors A and B of X. Since A′ ·B′ = A ·B
if A′ ∼ A and B′ ∼ B, then the intersection is well defined on the Picard group of
X, that is it induces a bilinear map

Pic(X)× Pic(X)→ Z.
The Picard group, modulo torsion, equipped with the quadratic form defined by
the intersection pairing is called the Picard lattice of X.

Example 1.2.1. The surface X = P1 × P1 has a Picard group of rank 2. The
two generators [F1] and [F2] have intersections Fi · Fj = δij . Hence the Picard
lattice of X is represented by the Gram matrix[

0 1
1 0

]
.

The quadratic form on Z2 represented by the above matrix is denoted by U .

1.3. The canonical class. Let X be a surface and let ω be a meromorphic
2-form on X. If U is an open affine subset of X with coordinates z1, z2, then

ω|U = fU dz1 ∧ dz2

were fU is a meromorphic function on U . If we consider an open affine covering
{Ui} of X and let ω|Ui

= fUi
dzi1 ∧ dzi2, then the collection of principal divisors

div(fUi) defines a divisor of X called a canonical divisor of X and denoted by
KX . Now consider two meromorphic forms ω and ω′ of X. If we write these
forms on two affine open subsets U and V of X, we get ω|U = αU dz1 ∧ dz2 and
ω′|U = α′U dz1 ∧ dz2 and similarly on V . Observe that αV = J αU and α′V = J αU ,
where J is the Jacobian of the coordinate change from U to V . In particular the
quotient α′/α does not change, so that div(α′/α) is a principal divisor. Hence the
class of KX in Pic(X) is independent on the choice of the meromorphic form.

Example 1.3.1. We can cover P1 with two affine coordinate charts U0 and U1.
The meromorphic form dz0 on U0 glues on U0 ∩ U1 with the form −1/z2

1 dz1 of U1

since z1 = 1/z0 on U0 ∩U1. Hence a canonical divisor of P1 is KP1 = −2p, where p
is the zero locus of z1 in U1. Similarly one can prove that KPn = −(n+ 1)H, where
H is a hyperplane of Pn.

1.4. Adjunction formula. If C is a smooth curve on a surface X a canonical
divisor for C can be obtained by means of the adjunction formula:

KC = (KX + C)|C .
Since C is a curve, the degree of a canonical divisor is 2g(C)− 2, where g(C) is the
topological genus of C. Thus we have

2g(C)− 2 = deg(KC) = (KX + C) · C.
It follows that the right hand side intersection number is always even.

Example 1.4.1. If Fi is the fiber of the i-th projection πi : P1×P1 → P1, then
Fi is a smooth rational curve with F 2

i = 0. Hence KX ·Fi = −2. Let X = P1×P1.
If [KX ] = a[F1] + b[F2], then by using the previous observation and our knowledge
of the intersections between the Fi’s, we get [KX ] = −2[F1]− 2[F2].
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Example 1.4.2. If KX ∼ 0 and C is a smooth curve, then C2 = 2g(C)− 2. In
particular C2 = −2 if C is rational and C2 = 0 if C is elliptic.

1.5. Riemann-Roch formula. Given a divisor D on a surface X we can
form the sheaf OX(D), locally defined, on an open subset U of X, as the com-
plex vector space of rational functions f of U such that div(f) + D is an effective
divisor of U . The dimension of the cohomology groups Hi(X,OX(D)) are de-
noted by hi(OX(D)) and the Euler characteristic by χ(OX(D)) := h0(OX(D)) −
h1(OX(D)) + h2(OX(D)). The Riemann-Roch formula is

χ(OX(D)) =
1

2
(D −KX) ·D +

1

12
(K2

X + e(X)),

where e(X) denotes the topological Euler characteristic of X, that is the alternating
sum of the ranks of the singular homology groups of X. Observe that h0(OX) =
1 since X is a complete variety. Moreover h2(OX) = h0(OX(KX)) due to an
important theorem of Serre, called Serre’s duality theorem. The Euler characteristic
of the sheaf of regular function OX is related to the Euler characteristic of the
surface X by the following Noether formula:

χ(OX) =
1

12
(K2

X + e(X)),

which is easily obtained by putting D = 0 in the Riemann-Roch formula.

Example 1.5.1. The Euler characteristic of the projective plane is e(P2) = 3,
since it has cohomology only in even dimension and all these groups are isomorphic
to Z. Since KP2 = −3H, then K2

P2 = 9, so that we have χ(OP2) = 1. Hence the
Riemann-Roch formula for the projective plane gives:

χ(OP2(dH)) =
1

2
(dH + 3H) · dH + 1 =

1

2
(d+ 3)d+ 1

since H2 = 1. Observe that the last formula gives exactly the dimension of the
degree d part of the graded polynomial ring C[x0, x1, x2], when d ≥ 0. Hence
χ(OP2(dH)) = h0(OP2(dH)). Indeed it is possible to prove that both the higher
cohomology groups of the sheaf OP2(dH) vanish for d > 0.

2. Topology

2.1. Poincaré duality. Given a compact complex connected surface X we
will denote by Hi(X,Z) its i-th singular cohomology group and by Hi(X,Z) the
i-th singular homology group . All of them are finitely generated abelian groups.
Recall the content of Poincaré duality for surfaces [GH94, Pag. 53]: for each i ≥ 0
there is a natural isomorphism

Hi(X,Z)→ H4−i(X,Z).

By the definition of singular homology and cohomology there is a natural map
Hi(X,Z)→ Hi(X,Z)∗ coming from the corresponding map at the level of cochain.
The universal coefficient theorem asserts that the following sequence of abelian
group is exact:

0 // Ext1(Hi−1(X,Z),Z) // Hi(X,Z) // Hi(X,Z) // 0.
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In particular Hi(X,Z)/Tors ∼= Hi(X,Z)∗ and TorsHi(X,Z) ∼= TorsHi−1(X,Z),
where Tors denotes the torsion part of an abelian group. As a consequence there
is a perfect bilinear symmetric pairing, called the intersection pairing:

H2(X,Z)/Tors×H2(X,Z)/Tors→ Z.
Here the word perfect means that the matrix defining the pairing has determinant
±1. Other two easy consequences of Poincaré duality and the universal coefficient
theorem are

TorsH2(X,Z) ∼= TorsH1(X,Z) TorsH3(X,Z) = (0).

It is worth noticing that Hi(X,Z)⊗ZR ∼= Hi(X,Z)DR, where the right hand side is
the De Rham cohomology of X, that is the real vector space of closed forms modulo
exact forms. The intersection pairing on Hi(X,Z) ⊗Z R can be thus expressed at
the level of forms as:

ω1 · ω2 :=

∫
X

ω1 ∧ ω2.

Example 2.1.1. Let X := C2/Γ be a complex torus obtained by taking the
quotient of C2 with a maximal subgroup Γ ∼= Z4. The group Γ acts by translation,
so if dxi is a 1-form on C2, then it descends to a 1-form on X since it is invariant
with respect to the action of Γ, that is d(xi+a) = dxi for any a ∈ Γ. Moreover one
can prove that it is a closed form and that {dxi ∧ dxj : 1 ≤ i < j ≤ 4} gives a basis
of H2(X,Z). Observe that for example dx1 ∧ dx2 ∧ dxi ∧ dxj = 0 whenever dxi
or dxj is linearly dependent with dx1, dx2. Thus the Gram matrix with respect to
the given basis is the block matrix:

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 .
The standard notation for this type of lattice is U ⊕ U ⊕ U , where U is the rank
two lattice whose Gram matrix is the up-left two by two submatrix of the previous
matrix.

2.2. The topological index theorem. The intersection form onH2(X,Z)/Tors
defines a quadratic form q : H2(X,Z)/Tors → Z by q(x) := x · x. Taking tensor
product with the real numbers we obtain a real vector space H2(X,Z)⊗ZR equipped
with a non-degenerate quadratic form. Its signature is a topological invariant of X.
If we denote by KX the canonical divisor of X, with K2

X its self-intersection and

by e(X) :=
∑4
i=0(−1)i rkHi(X,Z) the Euler characteristic of X, then we have the

following.

Theorem 2.2.1. Let b+ and b− be respectively the number of positive and neg-
ative eigenvalues of the quadratic form q on the real vector space H2(X,Z) ⊗Z R.
Then

b+ − b− =
1

3
(K2

X − 2e(X)).

Example 2.2.2. Let X be a smooth cubic surface of P3. Since X is birational
to the projective plane, then it is possible to show that h1(OX) = h2(OX) = 0,
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so that χ(OX) = 1. By adjunction formula we have KX = −H|X , where H is a
plane. Hence K2

X = 3. By using the previous facts and Noether’s formula we get
e(X) = 9, which gives b+ − b− = −5. Still by the Euler characteristic of X we
deduce that H2(X,Z) has rank 7, so that b+ = 1 and b− = 6.

2.3. The exponential sequence. Let X be a smooth compact complex va-
riety and denote by ZX the sheaf of locally constant integer functions on X. The
exponential sequence of X is

0 // ZX // OX
exp // O∗X // 0,

where exp(f) := e2πif . We briefly recall that the singular cohomology groups
Hi(X,Z) and the sheaf cohomology groups Hi(X,ZX) are isomorphic and we will
often identify them in the future. Moreover the Picard group of X is isomorphic
to the cohomology group H1(X,O∗X). Hence taking cohomology we obain the long
exact sequence

H1(X,ZX) // H1(X,OX)
exp // H1(X,O∗X)

τ // H2(X,ZX) // H2(X,OX)

H1(X,Z) Pic(X) H2(X,Z).

The image of the above exponential map is isomorphic to the quotient ofH1(X,OX)
by the image of the subgroup H1(X,Z). It is possible to see that this quotient is
an abelian variety, that is a projective complex torus, also denoted by Pic(X)0,
which when X is a curve is exactly the group of degree zero divisors modulo linear
equivalence. The image of τ is the Nerón-Severi group of X, denoted NS(X). Hence
we can summarize the previous observations in the following exact sequence:

0 // Pic(X)0 // Pic(X)
τ // NS(X) // 0.

It is important to remark that the homomorphism τ is an isometry with respect to
the two quadratic forms defined in Pic(X) and H2(X,Z) ∼= H2(X,Z), that is

τ([D1]) · τ([D2]) = [D1] · [D2].

2.4. The Lefschetz theorem on hyperplane sections. Let X be a smooth
algebraic complex subvariety of dimension n of PN . Let H be a hyperplane and let
Y = X ∩H. Then the inclusion map Y → X induces isomorphisms

Hi(Y,Z)→ Hi(X,Z)

for any i < n− 1 and is surjective for i = n− 1. A similar statement holds for the
induced homomorphism

π1(Y )→ π1(X).

It is an isomorphism when n ≥ 3 and is surjective when n = 2 (see [EoMa]).
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Exercises

Exercise 2.1. Calculate a basis of the Picard group of Pa × Pb.

Exercise 2.2. Let X be a smooth cubic surface of P3 which contains a line L.
Calculate L2.

Exercise 2.3. Let X = C2/Γ be a complex torus. Prove that KX ∼ 0.

Exercise 2.4. Let X = P1×P1 and let C be a smooth curve of X whose class
in Pic(X) is a[F1] + b[F2]. Find the genus of C and χ(OX(C)).

Exercise 2.5. Let X be a smooth projective surface with h1(OX) = h2(OX) =
0. Prove that Pic(X)/Tors is unimodular. Moreover, if nKX ∼ 0 for some positive
integer n, show that the previous lattice has signature (1, 9).



The period domain

3. Topological properties

3.1. K3 surfaces. A K3 surface is a smooth complex compact surface X
which satisfies the following:

(3.1.1) H0(X,OX(KX)) = CωX H1(X,OX) = (0).

The first condition tells us that, modulo scalar multiplication, X admits a unique
holomorphic 2-form ωX , while the second condition is equivalent to ask for the
vanishing of the first Betti number of X. As an example of K3 surface consider a
smooth quartic surface X ⊂ P3, like the Fermat surface defined by the equation

x4
0 + x4

1 + x4
2 + x4

3 = 0.

By adjunction formula the fact that X ∼ 4H and the fact that −KP3 = −4H, where
H is a plane, we deduce that the canonical class of X is trivial. Hence the first
condition in (3.1.1) is satisfied. It is possible to prove that also the second condition
is satisfied, by using the Lefschetz theorem on hyperplane sections, which gives the
vanishing of H1(X,C), and the Hodge decomposition that we will introduce later
in this chapter. By an iterated application of the previous argument, one can prove
that a smooth complete intersection of a quadric and a cubic in P4 is again a K3
surface. The same holds for the complete intersection of three quadrics in P5.

Aim of this mini-course is to introduce the basic theory of K3 surfaces which
from many perspectives represent a 2-dimensional generalization of elliptic curves.

3.2. Singular cohomology I. Let X be a K3 surface. Then h1(OX) = 0 by
definition and h2(OX) = h0(OX(KX)) = h0(OX) = 1 by Serre’s duality. So the
Euler characteristic of the structure sheaf OX is 2. Hence by Noether’s formula
and the fact that KX is trivial we get

e(X) = 12 (χ(OX) +K2
X) = 24.

Since h1(OX) = 0, then by the exponential sequence the rank of H1(X,Z) is zero.
Hence the same is true for H1(X,Z), so that by Poincaré duality also H3(X) has
zero rank. Since X is connected H0(X) ∼= Z and H4(X) ∼= Z being X orientable.
Thus by our previous calculation of the Euler characteristic of X we deduce that
H2(X,Z), or equivalently H2(X,Z), has rank 22.

If C is a smooth curve on X, and KC is the canonical divisor of C, by adjunction
formula

2g(C)− 2 = deg(KC) = (KX + C) · C = C2,

where g(C) is the topological genus of C. In particular C2 is an even number.
Recall that the curve C has a representative class [C] in Pic(X) and a class τ([C])
in H2(X,Z), defined by means of the exponential sequence. Thus we have just
shown that all the elements of the Nerón-Severi group of X have even square. It

11



12 THE PERIOD DOMAIN

is possible to extend this observation to the whole cohomology group, that is x2 is
an even number for any x ∈ H2(X,Z) (see [BHPVdV04]).

3.3. The fundamental group. The proof that any K3 surface is simply con-
nected is not easy since it makes use of the full knowledge of the period domain.
To sketch the idea, the proof is in two steps. First of all one proves that all K3
surfaces are diffeomorphic. This result depends on the fact that the period domain
of K3 surfaces is connected (see Theorems 5.4.1 and 5.5.1) and the fact that a holo-
morphic family of complex manifolds is a trivial family from the differential point
of view [BHPVdV04]. In particular it is enough to show that a smooth quartic
surface X of P3 is simply connected.

Proposition 3.3.1. Any smooth quartic surface of P3 is simply connected.

Proof. Consider the degree four Veronese embedding ν : P3 → P34 and ob-
serve that it maps quartic surfaces of P3 to hyperplane sections of ν(P3) so that
X ∼= ν(P3) ∩ H for some hyperplane H of P34. Then one applies the Lefschetz
theorem on hyperplane sections to get

π1(X) ∼= π1(ν(P3) ∩H) ∼= π1(ν(P3)) ∼= π1(P3),

showing that X is simply connected. �

Remark 3.3.2. If X is a K3 surface then, by the exponential sequence and
h1(OX) = 0, we know that H1(X,Z) has rank zero as already observed before. By
the universal coefficient theorem also H1(X,Z) has rank zero. Observe that this
argument is not enough to conclude that X is simply connected. Indeed consider
the Godeaux surface Y , defined as the quotient of the Fermat quintic S:

x5
0 + x5

1 + x5
2 + x5

3 = 0

with respect to the action xi 7→ εixi, where ε is a 5-th root of the unity. Since
the action has no fixed points, then Y is a smooth surface. Moreover S is simply
connected by Lefschetz theorem on hyperplane sections. Hence it is the universal
covering space of Y so that π1(Y ) ∼= Z/5Z and h1(OY ) = 0 due to the Hodge
decomposition (4.3.1) of H1(X,C).

4. Hodge theory

4.1. Exterior forms. Let V be a complex vector space with basis {v1, . . . , vn}.
The space of (p, q)-forms on V is the complex vector space V p,q generated by the
symbols

vi1 ∧ · · · ∧ vip ∧ v̄j1 ∧ · · · ∧ v̄jq ,
where v∧w = −w∧ v and the indices ik and js vary over all the possible subsets of
{1, . . . , n} of cardinalities p and q respectively. The symbol ∧V denotes the exterior
algebra of V , meaning with this the vector space

∧V :=

2n⊕
p+q=0

V p,q

together with the antisymmetric product (w,w′) 7→ w ∧ w′.

Example 4.1.1. The exterior algebra of C is ∧C = C0,0 ⊕ C1,0 ⊕ C0,1 ⊕ C1,1

where for example C1,0 = 〈v〉 and C1,1 = 〈v ∧ v̄〉. Observe that C2,0 = 〈0〉, since
v ∧ v = 0 by antisymmetry.
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4.2. Dolbeault cohomology. Given a smooth compact complex surface X
with cotangent bundle EX , we define its exterior bundle ∧EX to be the vector bundle
whose fibers are the exterior algebras ∧EXp, for p ∈ X. Its transition functions on
the intersection Ui ∩Uj of two open subsets of a trivializing covering of X, are the
matrices ∧gij , where gij are the transition matrices of the bundle ΩX . Now, since
X has dimension 2, then

∧EX =

4⊕
p+q=0

Ep,qX ,

moreover the right hand side summands vanish whenever p > 2 or q > 2. An
interesting property of the exterior bundle is that if we have a holomorphic map
f : X → Y of compact complex varieties, then the pull-back f∗ : ∧EY → ∧EX maps
each Ep,qY into the corresponding Ep,qX . This property, together with the existence
of a linear differential operator

∂̄ : Γ(X, Ep,qX )→ Γ(X, Ep,q+1
X )

such that ∂̄ ◦ ∂̄ = 0, gives a cohomology theory for compact complex varieties.
This is the Dolbeault cohomology whose groups are denoted by Hp,q(X) and their
dimensions by hp,q(X).

Remark 4.2.1. Denote by ΩpX the sheaf of holomorphic p-forms, that is the
sheaf of forms which locally can be written as αdzi1∧· · ·∧dzik , with α holomorphic.
The sheaf admits the following acyclic resolution:

ΩpX
//Ep,0X

∂̄ //Ep,1X
∂̄ // · · ·

meaning with this that the sequence is exact and the higher cohomology (i > 0) of

all the Ep,kX vanishes. The exactness of the sequence is due to Poincaré Lemma for
the operator ∂̄. Hence by considering the spectral sequence of the double complex
Či(Ep,jX ), given by Čech cocycles of the sheaf Ωp,jX , one proves that

Hq(X,ΩpX) ∼= Hp,q(X).

4.3. Hodge decomposition. Let V be a finitely generated free abelian group.
a Hodge structure of level n, with n ∈ Z, on V ⊗Z C is a direct sum decomposition

V ⊗Z C =
⊕
p+q=n

V p,q

such that V p,q = V q,p. Here the overline means the complex conjugation. Denote
by bi(X) the i-th Betti number of X, that is the rank of the singular homology
group Hi(X,Z). In case X is a smooth projective variety, or just smooth Kähler
variety [EoMb], the n-th singular cohomology group of X admits the following
Hodge structure of level n:

(4.3.1) Hn(X,C) =
⊕
p+q=n

Hp,q(X).

In particular each odd Betti number b2k+1(X) is an even number. Observe that
by definition a K3 surface is not necessarily projective, but it is always Kähler,
as shown in [Siu83]. Hence the cohomology of any K3 surface admits a Hodge
structure.
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We conclude the section by applying the result of the previous proposition and
Serre’s duality, to the description of the Hodge diamond of a K3 surface X. This is
a picture containing all the dimensions of the spaces hp,q(X).

1

h1,0(X) h0,1(X)

h2,0(X) h1,1(X) h0,2(X)

h2,1(X) h1,2(X)

1

1

0 0

1 20 1

0 0

1

Figure 1. The Hodge diamond of a K3 surface

4.4. Singular cohomology II. As a consequence of the previous proposition
we have the following [BHPVdV04].

Proposition 4.4.1. Let X be a K3 surface. Then the groups H1(X,Z) and
H3(X,Z) are trivial. Moreover H2(X,Z) is a free Z-module of rank 22 which,
endowed with the quadratic form given by the cup product, is an even lattice of
signature (3, 19).

Proof. By the exponential sequence we already know that the first and third
Betti numbers of X are zero. Hence H1(X,Z) = (0) and

TorsH2(X,Z) ∼= TorsH2(X,Z) ∼= TorsH1(X,Z) ∼= TorsH3(X,Z)

by Poincaré duality and the universal coefficient theorem. Hence it is enough to
show that H1(X,Z) has no torsion (and thus it is trivial). Assume the countrary,
then π1(X) would contain a torsion element. This is equivalent to say that X
admits a degree n > 1 finite unbranched cover π : Y → X, where Y is a compact
complex surface. Now e(Y ) = n · e(X) = 24n and KY = π∗KX ∼ 0 so that
h2(OY ) = 1. Hence by Noether formula we get

2− h1(OY ) = χ(OY ) =
1

12
(K2

Y + e(Y )) = 2n,

which gives n = 1, a contradiction. To conclude the proof, let b+ and b− be,
respectively, the number of positive and negative eigenvalues of the quadratic form
defined by the intersection form on H2(X,Z). By the topological index theorem
and our calculation of the Euler characteristic of X we get

b+ − b− =
1

3
(K2

X − 2e(X)) = −16.

Since H2(X,Z) has rank 22, then the signature of its quadratic form is (3, 19). We
have already seen that it is an even lattice. �

Remark 4.4.2. Observe that even if the argument adopted in the previous
proposition shows that π1(X)ab

∼= H1(X,Z) = (0), this is not enough to conclude
that X is simply connected. There are examples of topological spaces with trivial
homology and non-trivial fundamental group, like the Poincaré Homology 3-sphere
(http://goo.gl/sV1Ds).

http://goo.gl/sV1Ds
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4.5. Lattice structure in cohomology. Given a K3 surface X we can con-
sider the Hodge decomposition of its second cohomology group:

H2(X,C) = H2,0(X) ⊕ H1,1(X) ⊕ H0,2(X)

CωX Cω̄X ,

where the two vertical isomorphisms are given at the end of the subsection 4.2 of
Chaper 1. Observe that H2(X,C) is equipped with a quadratic form coming from
the cup product defined on singular cohomology of X. This product can be written
in terms of differential forms as (see Subsection 2.1 of the Preliminaries):

(4.5.1) (ω1, ω2) 7→ ω1 · ω2 :=

∫
X

ω1 ∧ ω2,

where ω1 and ω2 are closed 2-forms on X. In this way, if z1 and z2 are local
coordinates on X, then a local expression of the holomorphic 2-form ωX is αdz1 ∧
dz2, with α holomorphic. Thus we immediately deduce the Riemann relations:

ωX · ωX = 0 ωX · ω̄X > 0.

Moreover both ωX and ω̄X are orthogonal to any element of H1,1(X), since such an
element is locally written as β dz1 ∧ dz̄2 or as γ dz̄1 ∧ dz2. Observe that if V is the
complex vector space spanned by ωX and ω̄X , then the two-dimensional real vector
space VR := {x ∈ V : x = x̄} has a basis made by ωX + ω̄X and i(ωX − ω̄X). With
respect to this basis the intersection form is diagonal and positive-definite. Also
V = VR⊗C and the quadratic form on V is that induced by the complexification of
VR. We have already seen that the intersection form on H2(X,Z) is even, meaning
with this that x2 is even for any x ∈ H2(X,Z), and unimodular, which means that
the induced map H2(X,Z)→ H2(X,Z)∗ is an isomorphism, with signature (3, 19).
By Milnor Theorem ?? there is a unique such lattice, modulo isomorphism. We
will denote it by ΛK3.

4.6. The Picard lattice. If X is a K3 surface, the long exact cohomology
sequence of the exponential sequence of X gives

H1(X,OX) // H1(X,O∗X)
τ // H2(X,Z)

π // H2(X,OX)

(0) Pic(X) CωX .

This description fits well with the fact that τ(Pic(X)) is orthogonal to CωX in
H2(X,C) ∼= H2(X,Z) ⊗ C once we interpret the map π of the previous exact
sequence as the projection over the first factor in the Hodge decomposition of the
cohomology of X.

Since bot ωX and ω̄X are orthogonal to the elements of H1,1(X) with re-
spect to the intersection product (4.5.1) we have that ψ(Pic(X)) is contained in
the intersection of H1,1(X) with H2(X,Z). In fact by the Lefschetz theorem on
cohomology [EoMa], after identifying ψ(Pic(X)) with Pic(X), we have:

Pic(X) = H1,1(X) ∩H2(X,Z),

where we are considering H2(X,Z) embedded into H2(X,C). Thus the Picard
lattice of a K3 surface can be thought as the sublattice of H2(X,Z) which is or-
thogonal to ωX ∈ H2(X,Z) ⊗Z C = H2(X,C). In particular Pic(X) is an even
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lattice of rank

0 ≤ ρX ≤ 20

and signature (1, ρX − 1) if X is projective. The number ρX is called the Picard
rank of X. We conclude by recalling that a class [D] ∈ Pic(X) is nef if D · C ≥ 0
for any integral curve C of X. The set of nef classes forms the nef cone

Nef(X) ⊂ Pic(X)⊗Z Q.

5. Torelli theorem

In this section we briefly describe the period domain of marked K3 surfaces.

5.1. Deformation theory. A deformation of a complex manifold X is a
smooth proper flat morphism π : X → S, where both X and S are connected
complex varieties and moreover X is isomorphic to X0 := π−1(0), where 0 ∈ S is a
distinguished point. An infinitesimal deformation is defined in a similar way, but
this time S = Spec(C[ε]), where ε2 = 0.

Given a morphism S′ → S which maps a distinguished point 0′ ∈ S′ to 0 ∈ S
one can construct the pull-back of the deformation as the fibre product

X ′ := X ×S S′ //

��

X

��
S′ // S.

The deformation X → S of X is complete if any other deformation of X is isomor-
phic to a pull-back by a morphism S′ → S. If moreover the morphism is unique
then X → S is the universal deformation of X. If a deformation is complete and
just the tangent of the map S′ → S is unique, then the deformation is called ver-
sal. Observe that a universal deformation, if it exists, is a versal one. The versal
deformation of X is denoted by X → Def(X). Hence with Def(X) we will denote
the complex manifold whose points “represent” the deformations of X. We refer
to [Huy12, Theorem 2.5, pag. 76] for more details about the following.

Theorem 5.1.1. Every compact complex manifold X has a versal deformation.
Moreover T0 Def(X) ∼= H1(X,TX).

i) If H2(X,TX) = (0), then a smooth versal deformation exists.
ii) If H0(X,TX) = (0), then a universal deformation exists.

iii) The versal deformation of X is versal and complete for any of its fibers Xt if
h1(Xt, TXt) is constant.

It is possible to prove that the infinitesimal deformations of X are in bijection
with the elements of H1(X,TX). Hence they represent the tangent vectors to
Def(X) at the point 0 ∈ Def(X).

Now if X is a K3 surface the existence of a holomorphic 2-form ωX , which
vanishes nowhere, gives an isomorphism between the tangent and the cotangent
sheaf:

TX → ΩX τ 7→ ωX(τ,−).

Thus H0(X,TX) vanishes being isomorphic to H0(X,ΩX), whose dimension is
h0,1(X) = h1,0(X) = h1(OX) = 0. Hence X has a universal deformation. By
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a similar argument one proves that H2(X,TX) vanishes, so that the universal de-
formation of X is smooth. Moreover

h1(X,TX) = −χ(TX) = 10χ(OX) = 20,

where the middle equality is by the Riemann-Roch theorem for vector bundles
on an algebraic surface [Fri98, Theorem 2(ii), pag. 31] (see below for another
calculation when X is a quartic surface). Observe that since Def(X) is smooth,
then its dimension is the dimension of its tangent space at 0 ∈ Def(X), so that
dim Def(X) = 20, by our previous calculation and Theorem 5.1.1. It is possible to
show that fibers Xt in a sufficiently small neighborhood of 0 ∈ Def(X) are still K3
surfaces. Hence by Theorem 5.1.1 the universal deformation of X is also a universal
deformation of any such fiber Xt.

Example 5.1.2. If we consider smooth quartic surfaces of P3, they form a P34,
the dimension being obtained just by counting the elements of a monomial basis
of quartics minus one. Two such quartics X and Y are isomorphic if there exists
an element f of the projective linear group G := PGL(3,C) such that f(X) = Y .
Since G has dimension 15, then the GIT quotient P34//G is 19-dimensional. This in
particular implies that not all K3 surfaces are quartic surfaces. A similar conclusion
can be obtained by considering the map γ coming from the exact sequence of the
normal sheaf of X:

H0(TX) // H0(TP3 |X) // H0(NX)
γ // H1(TX) // H1(TP3 |X) // H1(NX)

(0) C15 C34 C20 C (0)

We have already seen that the first space vanishes. The third and sixth equalities
are due to NX ∼= OX(4) and Riemann-Roch. The second and fifth equalities are
due to the Euler sequence of P3 for the tangent sheaf TP3 tensored with OX . The
space γ(H0(NX)) represents the infinitesimal deformations of X inside P3, that
is it can be regarded as the space of embedded infinitesimal deformations of X.
Hence X has a 19-dimensional family of such deformations, which corresponds to
the tangent space at the point [X] of the GIT quotient P34//G.

5.2. The period domain. Recall that the second cohomology of any K3
surface X is isometric to the K3 lattice ΛK3. A marking is an isometry:

Φ : H2(X,Z)→ ΛK3.

Taking the complexification of Φ we obtain a C-linear map which we will denote
by the same symbol. Thus we can consider the image of the period line Φ(CωX) in
P(ΛK3⊗ZC). The period domain is the open subset of the 20-dimensional projective
quadric hypersurface:

Q := {Cω ∈ P(ΛK3 ⊗ C) : ω · ω = 0 and ω · ω̄ > 0}.
Observe that due to the Riemann conditions Φ(CωX) ∈ Q for any K3 surface X
and any marking Φ. Consider now the universal deformation X → Def(X) of X.
A marking Φ for X induces a marking for all the fibers of the deformation. This
allows us to define the period map to be the holomorphic map:

PX : Def(X)→ Q t 7→ Cωt,
where ωt is the image, via the marking induced by Φ, of a holomorphic 2-form of
Xt = π−1(t).
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5.3. The local Torelli theorem.

Proposition 5.3.1 (local Torelli theorem). Let X be a K3 surface and let X →
Def(X) be the universal deformation of X. Then the period map PX : Def(X)→ Q
is a local isomorphism.

For a complete proof of this proposition see [Huy12, Proposition 2.9, pag.
77]. Here we just observe that it is possible to show that the differential dPX at
the point 0 ∈ Def(X) is given by the C-linear map induced by the contraction
homomorphism (contraction by means of the holomorphic symplectic form ω):

H1(X,TX)
contr. // H1(X,ΩX)

∼=
��

T0 Def(X)

∼=

OO

Hom(H2,0(X), H2,0(X)⊥/H2,0(X)),

by showing that the right bottom expression is the tangent space of Q at P(0).
Hence dPX is an isomorphism at 0 ∈ Def(X) and the local period map is a local
isomorphism since in a small analytic neighborhood of 0 ∈ Def(X) all the fibers
are K3 surfaces with the same universal deformation space. Observe that we al-
ready knew that both Def(X) and Q have dimension 20, which is the dimension of
H1,1(X).

5.4. The global Torelli theorem. The following theorem has been proved
by Pjateckĭı-Šapiro, Šhafarevič [PŠŠ71].

Theorem 5.4.1 (global Torelli theorem). Let X and X ′ be two K3 surfaces
and let σ : H2(X,Z)→ H2(X ′,Z) be an isometry such that

(i) σ(CωX) = CωX′ ;
(ii) σ(Nef(X)) = Nef(X ′).

Then there exists a unique isomorphism ϕ : X ′ → X such that ϕ∗ = σ.

Condition (ii) of the theorem is usually formulated in terms of the Kähler cone
of X. Instead of introducing this cone here, we prefer to use the nef cone of X
which is its closure. When X is projective, the nef cone is defined as done at the
end of the previous section.

Let us denote now with Def(X)′ the moduli space of pairs (X,Φ), where X is
a K3 surface and Φ is a marking for X modulo the natural notion of isomorphism
between pairs. This can be formally obtained as Isom(R2f∗ZX ,ΛK3), where f :
X → Def(X) is the universal deformation of X. It is possible to show (see [Huy12])
that the forgetful map Def(X)′ → Def(X) is an infinite étale covering and that the
period map lifts to the global period map P : Def(X)′ → Q.

5.5. Surjectivity of the global period map. The following theorem is due
to Todorov [Tod79].

Theorem 5.5.1 (Surjectivity of the global period map). Let Cω ∈ Q. Then
there exists a K3 surface X and a marking Φ : H2(X,Z)→ ΛK3 such that CΦ(ωX) =
Cω.

Observe that the global period map P is locally injective due to the local
injectivity of the period map PX but it is not necessarily injective. Indeed if σ :
H2(X,Z)→ H2(X,Z) is an isometry which satisfies condition (i) but not condition
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(ii) of Theorem 5.4.1, then the pairs (X,Φ) and (X,Φ ◦ σ) are not isomorphic but
P((X,Φ)) = P((X,Φ ◦ σ)). Thus two such pairs are in the same fiber of the
global period map. It is possible to show that if the K3 surface is very general and
σ is any isometry of its second cohomology group which satisfies condition (i) of
Theorem 5.4.1, then either σ or −σ satisfies condition (ii) of the Theorem.

Proposition 5.5.2. For any positive integer 0 ≤ n ≤ 20 there exists a K3
surface X with ρX = n.

Proof. Let Cω ∈ Q be a period such that S := ω⊥∩ΛK3 is a lattice of rank n.
Observe that this depends just on the coefficients of ω with respect to a basis of ΛK3.
Now by Theorem 5.5.1 there exists a K3 surfaces X and a marking Φ : H2(X,Z)→
ΛK3 such that Φ(CωX) = Cω. The Picard lattice of X is ω⊥X ∩H1,1(X), so that
its image in ΛK3 is S. Thus X has Picard number n. �
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Exercises

Exercise 5.1. Shows that any non-isotrivial family of K3 surfaces, that is a
family π : χ → S whose period map is non-constant, admits a dense subset of K3
surfaces of rank 20.

Exercise 5.2. Show that for any even, positive integer number n there exists
a K3 surface whose Picard lattice is generated by a class x with x2 = n.

Exercise 5.3. Let X be the Fermat quartic surface of P3 defined by:

x4
0 + x4

1 + x4
2 + x4

3 = 0.

(i) Show that X contains 48 lines contained in the 12 planes of equations:

x3 = ±ζxi x3 = ±ζ3xi,

where i ∈ {0, 1, 2} and ζ is a 8-th primitive root of unity.
(ii) Show that the intersection matrix of the classes of the lines in Pic(X)

has rank 20 and signature (1, 19). In particular Pic(X) is a maximal sub
lattice of the 20-dimensional vector space H1,1(X).

(iii) Deduce that the intersection form on H2(X,Z) has signature (3, 19).
(iv) Reproduce the calculation of the intersection matrix of the lines of S by

means of the following Magma code [BCP97].

K<a>:=CyclotomicFie ld (8 ) ;

P<x , y , z ,w>:=Pro j e c t i veSpace (K, 3 ) ;
X:=Scheme (P, xˆ4+yˆ4+zˆ4+wˆ4) ;
l i n e s :=&cat [ PrimeComponents ( Scheme (X, x+p∗q ) ) : p in [ a,−a , a

ˆ3,−a ˆ 3 ] , q in [ y , z ,w ] ] ;
M:=Matrix(# l i n e s , [ Degree (p meet q ) : p , q in l i n e s ] ) ;

f o r i in [ 1 . .# l i n e s ] do M[ i , i ] :=−2; end f o r ;

Rank(M) ;



Bibliography

[BHPVdV04] Wolf Barth P., Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, Compact

complex surfaces, Second, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3.
Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and

Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4,

Springer-Verlag, Berlin, 2004. ↑12, 14
[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra sys-

tem. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265, DOI

10.1006/jsco.1996.0125. Computational algebra and number theory (London, 1993).
↑20

[EoMa] Encyclopedia of Mathematics, Lefschetz theorem, Encyclopedia of Mathematics,
available at http://www.encyclopediaofmath.org/index.php/Lefschetz_theorem.

↑9, 15

[EoMb] , Kähler manifold, Encyclopedia of Mathematics, available at http://www.

encyclopediaofmath.org/index.php/Khler_manifold. ↑13

[Fri98] Robert Friedman, Algebraic surfaces and holomorphic vector bundles, Universitext,

Springer-Verlag, New York, 1998. ↑17
[GH94] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics

Library, John Wiley & Sons Inc., New York, 1994. Reprint of the 1978 original. ↑7
[Huy12] Daniel Huybrechts, Lectures on K3 surfaces (2012), available at http://www.math.

uni-bonn.de/people/huybrech/K3Global.pdf. ↑16, 18
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