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Kinematical symmetries

The homogeneity of space-time implies that the generators Pi of spatial
displacements (i = 1, 2, . . . , d) and the generator Pt = H of time
translations correspond to in�nitesimal symmetries of any free particle.

Moreover, the isotropy of space implies that the generators Jij of
rotations are also symmetry generators of free particles.

Furthermore, a modern statement of the relativity principle is that the
generators Ki of inertial transformations (or boosts) also generate
symmetries for free particles.
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Space and time reversals

The space-reversal

Π : H 7→ +H , Pi 7→ −Pi , Jij 7→ Jij , Ki 7→ −Ki ,

and time-reversal

T : H 7→ −H , Pi 7→ +Pi , Jij 7→ Jij , Ki 7→ −Ki ,

induce involutive transformations of the kinematical generators.
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De�nition (Bacry & Lévy-Leblond, 1968)

A kinematical algebra is a Lie algebra spanned by the generators Pi of
spatial displacements, Pt = H of time translations, Jij of rotations and
Ki of inertial transformations such that

(i) the adjoint action of the subalgebra o(d) = spanR{Jij} decomposes
into the sum of the irreducible

trivial (= scalar) representation on the module spanned by H:

[J,H] = 0 ,

fundamental (= vector) representation on the module spanned by
the Pi or the Kj :

[J,P] ∼ P , [J,K] ∼ K ,

adjoint (= antisymmetric) representation on the module spanned by
the Jij :

[J, J] ∼ J ,

(ii) space and time reversal Π and T are automorphisms.
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Classi�cation (Bacry & Lévy-Leblond, 1968)

Theorem
For space of dimension d > 3, there are only 4 types of noncompact
kinematical algebras such that time translations and inertial
transformations do not commute:

Relativistic kinematical algebras

(c,Λ) The (anti) de Sitter isometry algebras o(d + 1, 1) and o(d, 2),
(c,0) The Poincaré algebra io(d, 1) = Rd+1 B o(d, 1),

Nonrelativistic kinematical algebras

(∞,Λ) The Newton-Hooke algebras nh±(d),
(∞,0) The Galilei algebra gal(d).

All algebras can be obtained from the (anti) de Sitter isometry algebras
(via Inönu-Wigner contractions).
Any (non)relativistic algebra admits only (one non)trivial central
extension.
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Poincaré vs (anti) de Sitter algebras

Inserting the (rescaled) cosmological constant Λ(= ± 1
R2 ), the nontrivial

commutators (besides the one involving the rotation generators) of the
relativistic kinematical algebras read

[P0,Ki] = iPi , [Ki,Kj ] = − i Jij , [Pi,Kj ] = iP0 δij

[P0,Pi] = iΛKi , [Pi,Pj ] = iΛ Jij ,

where the sign of the cosmological constant is

Λ > 0 for de Sitter isometry algebra o(d+ 1, 1),

Λ = 0 for Poincaré algebra io(d, 1),

Λ < 0 for anti de Sitter isometry algebra o(d, 2).
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Poincaré vs (anti) de Sitter algebras

Introducing the cosmological time τ , the speed of light c and the rest
mass M, the nontrivial commutators (besides the one involving the
rotation generators) of the trivial central extension by the generator M via

P0 = Mc2 + H

are

[H,Ki] = iPi , [Ki,Kj ] = − i k
c2

Jij , [Pi,Kj ] = i (M+
1

c2
H) δij

[H,Pi] = i
k

τ2
Ki , [Pi,Pj ] = i

k

c2τ2
Jij ,

where the sign k of the cosmological constant k is

+1 for de Sitter isometry algebra o(d+ 1, 1),

0 for Poincaré algebra io(d, 1),

−1 for anti de Sitter isometry algebra o(d, 2).
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Galilei vs Newton-Hooke algebras

Fixing the cosmological time τ and sending the speed of light c to
in�nity, the nontrivial commutators (besides the one involving the
rotation generators) are

[H,Ki] = iPi , [H,Pi] = i
k

τ2
Ki , [Pi,Kj ] = iM δij

where the sign k of the cosmological constant is

+1 for the central extension of the expanding Newton-Hooke algebra
nh+(d),

0 for the central extension of the Galilei algebra gal(d) = nh0(d),
called the Bargmann algebra bar(d),

−1 for the central extension of the oscillating Newton-Hooke algebra
nh−(d).
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Commuting diagram

Contraction diagram

Cosmological Flat

Relativistic o(d, 2)
τ→∞−→ io(d, 1)

c→∞ ↓ ↓ c→∞

Nonrelativistic nh−(d)
τ→∞−→ gal(d)

.
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Fundamental representation of the Galilei group

The Galilei group Gal(d) acts on the spatial coordinates x and time t as

(t,x)→ g(t,x) = (t+ β,Rx + vt+ a),

where β ∈ R; v,a ∈ Rd and R ∈ O(d).
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Standard realization of Galilei algebra

Galilei algebra: gal(d) = R2d B
(
o(d)⊕ R

)
R2d : Space-translation and Galilean boost

P̂i = −i∂i, K̂i = it∂i,

o(d) : Rotation

Ĵij = −i(xi∂j − xj∂i),

R : Time-translation

P̂t = i∂t.
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Schrödinger equation for a free particle

In quantum mechanics, the Galilei group Gal(d) acts by projective
representations on the Hilbert space of solutions to the Schrödinger
equation when the potential is space and time translation invariant.
For a single particle such a potential must be constant and is sometimes
called the internal energy U :

i ∂tψ(t, x) = (− ∆

2m
+ U)ψ(t, x) ,

so the particle is free.
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Schrödinger equation for a free particle

The projective representation is

ψ(t,x)→ γ
(
g(t,x)

)
ψ
(
g−1(t,x)

)
,

where γ ∈ U(1), e.g. under a pure Galilei boost gv

ψ(t,x)→ exp

[
− im

2
(v2t− 2v · x)

]
ψ
(
g−1
v (t,x)

)
.

The presence of the mass-dependent phase factor in the transformation
law implies a superselection rule forbidding the superposition of states of
di�erent masses, known as the Bargmann superselection rule.
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Schrödinger equation for a free particle

The projective representation is

ψ(t,x)→ γ
(
g(t,x)

)
ψ
(
g−1(t,x)

)
,

where γ ∈ U(1), e.g. under a pure Galilei boost gv as

ψ(t,x)→ exp

[
− im

2
(v2t− 2v · x)

]
ψ
(
g−1
v (t,x)

)
.

By enlarging the Galilei group Gal(d) to the Bargmann group Bar(d),
the representation becomes unitary.
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Standard realization of Bargmann algebra

Bargmann algebra: bar(d) = hd B
(
o(d)⊕ R

)
hd : Space-translation, Galilean boost and mass

P̂i = −i∂i, K̂i = mxi + it∂i, M̂ = m,

o(d) : Rotation

Ĵij = −i(xi∂j − xj∂i),

R : Time-translation

P̂t = i∂t.
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Standard realization of Newton-Hooke algebras

Newton-Hooke algebras: nh(d) = R2d B
(
o(d)⊕ R

)
R2d : Space-translation and inertial transformation

P̂i = −i cosh

(√
k
t

τ

)
∂i, K̂i = i

τ√
k

sinh

(√
k
t

τ

)
∂i,

o(d) : Rotation

Ĵij = −i(xi∂j − xj∂i),

R : Time-translation

P̂t = i∂t.
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Schrödinger equation for a harmonic oscillator

In quantum mechanics, the Newton-Hooke group NH(d) acts by
projective representations on the Hilbert space of solutions to the
Schrödinger equation for a harmonic oscillator:

i ∂tψ(t, x) =

(
1

2m
(−∆− k

τ2
|x|2) + U

)
ψ(t, x) .
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Geometrical digression

In the nonrelativistic limit c→∞, the metric and its inverse become
degenerate

− 1

c2
ηµνdx

µdxν → (dt)2 , ηµν∂µ∂ν → δij∂i∂j ,

which de�nes the two �metrics� (for time and space) of the Galilei
space-time, the �at Newtonian space-time.

The Galilei and Newton-Hooke transformations actually preserve the time
interval dt and also the spatial metric δijdx

idxj on each simultaneity leaf
(i.e. for dt = 0).

The Newton-Hooke space-times are Newtonian space-times endowed with
the same metrics but di�erent (not �at) torsionless a�ne connection

Γi00 = − k

τ2
xi

equal to minus the gravitational force experienced by a free particle (i.e.
in free fall).
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De�nition (Negro, del Olmo & Rodriguez-Marco, 1997)

A nonrelativistic conformal algebra is a Lie algebra such that

(i) a nonrelativistic kinematical algebra is a proper subalgebra,

(ii) space and time reversal Π and T are automorphisms,

(iii) it admits a faithful vector-�eld realization such that the conformal
equivalence classes (i.e. modulo conformal factors) of the time
interval dt and the space metric δijdx

idxj on each simultaneity leaf
are preserved.
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Classi�cation (Negro, del Olmo & Rodriguez-Marco, 1997)

Theorem
For space of dimension d > 3, there is a countable class of
�nite-dimensional nonrelativistic conformal algebras: for a given positive
integer 2` > 0, there is only one inequivalent nonrelativistic
`-conformal (Galilei ⇔ Newton-Hooke) algebra

cgal2`(d) ∼= cnh±2`(d)

such that (dt)2` and the space metric δijdx
idxj transform with the same

conformal factor. The inverse z = 1/` is called the dynamical exponent
of the nonrelativistic `-conformal algebra.
Any (half)integer-conformal Galilei algebras admit only (one non)trivial
central extension.

The `-conformal Galilei algebra cgal2`(d) can also be obtained as the
Inönu-Wigner contraction of the `-conformal Newton-Hooke algebra
cnh±,`(d).
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Standard realization of `-conformal Galilei algebra

`-conformal Galilei algebra: cgal2`(d) = R(2`+1)d B
(
o(d)⊕ sp(2,R)

)
R(2`+1)d : Space-translation, Galilean boost and acceleration

Ĉ
(n)
i = −i tn∂i, (n = 0, 1, . . . , 2`)

o(d) : Rotation

Ĵij = −i(xi∂j − xj∂i),

sp(2,R) : Time-translation, scale transformation and expansion

P̂t = i∂t,

D̂ = i
(
t ∂t + ` xi∂i

)
,

Ĉ = i
(
t2∂t + 2` txi∂i

)
.
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Structure of `-conformal Galilei algebra

`-conformal Galilei algebra: cgal2`(d) = R(2`+1)d B
(
o(d)⊕ sp(2,R)

)
The adjoint action of the subalgebra o(d) = spanR{Jij} decomposes into
the sum of the irreducible

trivial representation on the module spanned by H, D or C:

[J,H] = 0 , [J,D] = 0 , [J,C] = 0 ,

fundamental representation on the module spanned by the C
(n)
i for

�xed integer n:
[J,C(n)] ∼ C(n) ,

adjoint representation on the module spanned by the Jij :

[J, J] ∼ J ,
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Structure of `-conformal Galilei algebra

`-conformal Galilei algebra: cgal2`(d) = R(2`+1)d B
(
o(d)⊕ sp(2,R)

)
The adjoint action of the subalgebra sp(2,R) = spanR{H,D,C}
decomposes into the sum of the irreducible

trivial representation on the module spanned by the Jij :

[J,H] = 0 , [J,D] = 0 , [J,C] = 0 ,

spin-` representation on the module spanned by the C
(n)
i for �xed

integer i:

[D,C
(n)
i ] = (n−`)C(n)

i , [H,C
(n)
i ] ∼ C

(n−1)
i , [C,C

(n)
i ] ∼ C

(n+1)
i .

adjoint representation on the subalgebra sp(2,R) itself:

[D,H] ∼ H , [D,C] ∼ C , [H,C] ∼ D .
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Standard realization of conformal Galilei algebra

1-conformal Galilei algebra: cgal2(d) = R3d B
(
o(d)⊕ sp(2,R)

)
R3d : Space-translation, Galilean boost and acceleration

Ĉ
(0)
i = −i∂i = P̂i, Ĉ

(1)
i = −it∂i = −K̂i, Ĉ

(2)
i = −i t2∂i = Ĉi,

o(d) : Rotation

Ĵij = −i(xi∂j − xj∂i),

sp(2,R) : Time-translation, scale transformation and expansion

P̂t = i∂t,

D̂ = i
(
t ∂t + xi∂i

)
,

Ĉ = i
(
t2∂t + 2 txi∂i

)
.
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Conformal Galilei algebra

Usually, the 1-conformal Galilei algebra cgal2(d) is simply called the
conformal Galilei algebra cgal(d) because it corresponds to a dynamical
exponent z = 1 as in relativistic physics and it is indeed the
Inönu-Wigner contraction of the relativistic conformal algebra

o(d+ 1, 2)
c→∞−→ cgal(d)

with the following identi�cation for the generators of

Space translations: Pi,

Time translation: P0 ∼ 1
c H,

Rotations: Jij ,

(Lorentz → Galilei) boosts: J0i ∼ cKi,
Dilation: D,

Spacelike conformal boosts → accelerations: Si ∼ c2 Ci,
Timelike conformal boost → expansion: S0 ∼ cC.

The conformal Galilei algebra cgal(d) only admit trivial central
extensions. Heuristically, this comes from the fact that the relativistic
conformal algebra is a symmetry of massless particles only.
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Standard realization of 1
2-conformal Galilei algebra

1
2 -conformal Galilei algebra: cgal1(d) = R2d B

(
o(d)⊕ sp(2,R)

)
R2d : Space-translation and Galilean boost

Ĉ
(0)
i = −i∂i = P̂i, Ĉ

(1)
i = −it∂i = −K̂i,

o(d) : Rotation

Ĵij = −i(xi∂j − xj∂i),

sp(2,R) : Time-translation, scale transformation and expansion

P̂t = i∂t,

D̂ = i
(

2t ∂t + xi∂i
)
,

Ĉ = i
(
t2∂t + txi∂i

)
.
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Schrödinger algebra

The central extension of the 1
2 -conformal Galilei algebra cgal1(d) is called

the Schrödinger algebra sch(d) because it corresponds to a dynamical
exponent z = 2 characteristic of nonrelativistic particles and it is indeed
the symmetry algebra of the Schrödinger equation for a free particle
(with zero internal energy).
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Standard realization of Schrödinger algebra

Schrödinger algebra: sch(d) = hd B
(
o(d)⊕ sp(2,R)

)
hd : Time-translation, Galilei boost and mass

P̂i = −i∂i, K̂i = mxi + it∂i, M̂ = m,

o(d) : Rotation

M̂ij = −i(xi∂j − xj∂i),

sp(2,R) : Time-translation, scale transformation and expansion

P̂t = i∂t,

D̂ = i

(
2 t ∂t + xi∂i +

d

2

)
,

Ĉ = i

(
t2∂t + t

(
xi∂i +

d

2

))
+
m

2
x2.
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What are non-relativistic singletons?

Group-theoretical de�nitions

Free relativistic singleton
UIR of the Poincaré algebra io(d, 1) that can be lifted to a UIR of the
conformal algebra o(d+ 1, 2).
⇔ Helicity representation labeled by zero mass and by spin
(Angelopoulos, Flato, Fronsdal, Sternheimer, 1980).

Free non-relativistic singleton
UIR of the Bargmann algebra bar(d) that can be lifted to a UIR of the
Schrödinger algebra sch(d).
⇔ Massive representations labeled by zero internal energy and by spin
(Perroud, 1977).

In other words, the free non-relativistic singletons can be identi�ed with
the solutions of the free Schrödinger equation with zero internal energy(

i∂t +
∆

2m

)
ψ(t,x) = 0 (Hagen-Niederer, 1972)
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Schrödinger algebra

Schrödinger algebra: sch(d) = hd B
(
o(d)⊕ sp(2,R)

)
Standard representation as order-one di�erential operators acting on
wave functions ψ(t,x)
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Standard realization

Schrödinger algebra: sch(d) = hd B
(
o(d)⊕ sp(2,R)

)
hd : Time-translation, Galilei boost and mass

P̂i = −i∂i, K̂i = mxi + it∂i, m̂ = m,

o(d) : Rotation

M̂ij = −i(xi∂j − xj∂i),

sp(2,R) : Time-translation, scale transformation and expansion

P̂t = i∂t,

D̂ = i

(
2 t ∂t + xi∂i +

d

2

)
,

Ĉ = i

(
t2∂t + t

(
xi∂i +

d

2

))
+
m

2
x2.
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Standard realization

Schrödinger algebra: sch(d) = hd B
(
o(d)⊕ sp(2,R)

)
Observation: (M. Valenzuela, 2009) Alternative representation as
degree-two polynomials in the momenta and Galilean boost generators
acting on wave functions solutions of free Schrödinger equation
(i∂t + ∆

2m )ψ(t,x) = 0.
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Standard realization

Schrödinger algebra: sch(d) = hd B
(
o(d)⊕ sp(2,R)

)
hd :

P̂i = P̂i(−t), K̂i = mX̂i(−t), m̂ = m,

o(d) :

M̂ij = X̂i(−t)P̂ j(−t)− X̂j(−t)P̂ i(−t),

sp(2,R) :

Ĥ =
P̂ 2(−t)

2m
,

D̂ = −X̂i(−t)P̂i(−t) +
d

2
,

Ĉ =
m

2
X̂2(−t).
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Standard realization

Schrödinger algebra: sch(d) = hd B
(
o(d)⊕ sp(2,R)

)
Observation: If one changes the Hamiltonian Ĥ = P̂ 2

2m to

Ĥ ′ = Ĥ − k

τ2
Ĉ =

1

2m
(P̂ 2 − k

τ2
X̂2)

and change accordingly the time dependence of X̂i(−t) and P̂j(−t) then
the former representation of sch(d) as degree-two polynomials in the
momenta and Galilean boost generators produce a Newton-Hooke
realization of sch(d) on wave functions solutions of Schrödinger equation
for a harmonic oscillator with zero internal energy(

i∂t +
1

2m
(∆ +

k

τ2
|x|2)

)
ψ(t,x) = 0 , (Niederer, 1972).
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Light-like dimensional reduction

Main idea behind the light-like dimensional reduction:

The kinetic operator of a relativistic theory

�−M2 = −2∂+∂− + ∆−M2

when acting on eigenmodes of a light-like component of the momentum,

Ψ(x) = e−imx
−
ψ(x+, xi),

is proportional to the kinetic Schrödinger operator of a non-relativistic
theory

i∂t + ∆/2m+ µ

via the identi�cation x+ = t and M2 = −µ/2m.
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Light-like dimensional reduction

Main idea behind the light-like dimensional reduction:

(Group theory) The quadratic Casimir operators of the Poincaré and the
Bargmann algebras are related

P̂µP̂µ/2 = −P̂+P̂− + P̂ iP̂i/2 = −m̂P̂t + P̂ iP̂i/2

upon the standard light-cone identi�cation of the non-relativistic mass
and Hamiltonian operators

P̂+ = m̂ , P̂− = P̂t .

The Bargmann (Schrödinger) algebra is isomorphic to the subalgebra of
the Poincaré (conformal) algebra that commutes with P̂+ = m̂. [Gomis
and Pons, 1978 (Burdet, Perrin and Sorba, 1973)]
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