Иммунотерапия раковых опухолей с точки зрения системной биологии САПСЕК ММИЛОТНЕКАРУ

Максим Артёмов

25 мая 2015

T cell activation requires 2 signals

CTLA4 and PD-1 are checkpoint regulatory molecules

Immunotherapy addresses second checkpoint

Huge success both in clinics and in academia

2011 ipilimumab approved by FDA for melanoma 2013 breakthrough of the year

Paradigm shift

CONVENTIONAL THERAPIES

CTLA-4

PD-1/PD-L1

LAG-3

TIM-3

VISTA

BTLA

Chemotherapy

Anti-angiogenic

Genomically targeted

Radiation

Surgery

Hormonal

Image taken from: Postow MA et al. N Engl J Med 2015. DOI: 10.1056/NEJMoa1414428

Mouse model of tumor rejection – panel of sarcomas

Some mouse sarcomas are naturally rejected while others grow out

Mouse model of tumor rejection – panel of sarcomas

Only regressor tumors express spnb2 mutant!

Only regressor tumors express spnb2 mutant!

By Jeffrey Ward

By Jeffrey Ward

By Jeffrey Ward

Checkpoint blockade works in progressor tumors

aCTLA4/aPD1 treatments "cure" the mice

Gubin et al, Nature 2014

Potential Antigens identified for T3 tumor

Rank	ld	WT peptide	Mut peptide	Median mutant affnity (nm ⁻¹)	Cutting score	Neoepitope ratio
1	Sbf2_V511L	FNYLYSPV	FNYLYSPL	0.3998714058	0.542809	3.5952400634
2	Alg8_A506T	ITYAWTRL	ITYTWTRL	0.2223404132	0.954498	1.0616164751
	_	GGFNFRTL	VGFNFRTL	0.2188577796	0.967372	12.8123805304
4	6430548M08Rik_H290R	KVYLYTHL	KVYLYTRL	0.1841609862	0.847512	1.2786360207
5	Apob_T1328S	STNVYSNL	SSNVYSNL	0.1027451056	0.870279	1.6649288887
6	Olfr168_P253H	VTFYYAPF	VTFYYAHF	0.0916300653	0.823354	0.667371074
7	Olfr1121_D127Y	MSYDRYVAI	MSYYRYVAI	0.0883059591	0.478287	1.4165113789
8	Olfr12_I133M	MAYDRFMAI	MAYDRFMAM	0.0818398718	0.975672	1.7597270663
9	Tpm2_1266T	ITLLFSFL	TTLLFSFL	0.0712708996	0.923923	0.3596749785
10	Olfr849_G208R	VSVLFFGV	VSVLFFRV	0.0698917259	0.368878	1.7065708369

Antigen-specific T-cells are present in tumor even before treatment!

Theraputic vaccination saves the mouse!

Theraputic vaccination saves the mouse!

Independent validation in two additional tumors

Tumor	Epitope	Sequence	Allele	Anchor?	Rank
d42m1 (r)	Spectrin-b2	VAVVNQIAL	H-2D⁵	Y	1
1000 (.)	Rabac1	VSFPFFCL	H-2K⁵	N	1
1969 (r)	Gpd2	YSPENMELL	H-2D⁵	N	1
$T_{2}(n)$	Alg8	ITYTWTRL	H-2K⁵	N	1
ТЗ (р)	Lama4	VGFNFRTL	H-2K⁵	N	2
F244 (p)	Pex14	IAFAFHQL	H-2K⁵	N	1

Mutational load is predictive of immunotherapy response

This is why first successes of checkpoint blockade are in melanoma!!

It all started in 19th century

Fig. 1. Dr William B. Coley (active career 1891-1936).

Worked in New York Cancer Hospital (later became a part of Memorial Sloan Kettering Cancer Center)

• Noticed that infection with erysipelas often leads to spontaneous regression of sarcomas

• Started therapeutically infection patients with inoperable sarcomas

"There can be no doubt that the influence of erysipelas upon malignant tumors is much more powerful than any other febrile disease." (Coley, 1931.)

It all started in 19th century

Fig. 3. First patient Coley treated by deliberate induction of erysipelas (Coley, 1896a). Large lesion on neck broke down and disappeared under treatment; see text for description. Patient remained well for 8 years, then died of recurrence (Coley, 1909).

Fig. 1. Dr William B. Coley (active career 1891-1936).

"There can be no doubt that the influence of erysipelas upon malignant tumors is much more powerful than any other febrile disease." (Coley, 1931.)

It turns out that *Streptococci* alone is not enough!

What we refer to as **Coley's toxins** is combination of two components:

- Streptococci gram-positive bacterial infection (no endotoxins)
- Serratia gram-negative bacteria (endotoxins)

"I wish at the outset to state what is known to every one who has read my previous papers, that the mixed toxins, prepared in the way described in these papers, have been shown to have a curative effect sufficient for practical purposes only in cases of sarcoma and not in cases of carcinoma." (Coley, 1908.)

It turns out that *Streptococci* alone is not enough!

What we refer to as **Coley's toxins** is combination of two components:

- Streptococci gram-positive bacterial infection (no endotoxins)
- Serratia gram-negative bacteria (endotoxins)

"I wish at the outset to state what is known to every one who has read my previous papers, that the mixed toxins, prepared in the way described in these papers, have been shown to have a curative effect sufficient for practical purposes only in cases of sarcoma and not in cases of carcinoma." (Coley, 1908.)

Note resemblance to classical vaccine formulation:

Adjuvant + Adaptive Immunity Target

Streptococci action is sarcoma specific!

"The curative action of erysipelas upon malignant tumors . . . is much more powerful in sarcoma than carcinoma." (Coley, 1894a.)

Survival

Type of cancer	Total	А	В	С	D	Е
Soft tissue sarcomas1	84	32	12	11	12	17
Lymphosarcomas (lymphomas) ²	33	10	4	4	7	8
Osteosarcoma ³	3	2	1	0	0	0
Ewing's tumor/reticulum cell sarcoma4	1	0	0	0	0	1
Ovarian carcinoma ⁵	4	1	2	0	0	1
Cervical carcinoma ⁵	2	0	1	0	0	1
Testicular ⁶	14	5	3	3	2	1
Renal ⁷	8	4	1	1	1	1
Multiple myeloma ⁸	1	0	0	1	0	0
Colorectal carcinoma9	1	1	0	0	0	0
Breast carcinoma ¹⁰	13	5	6	2	0	0
Melanoma ¹¹	6	2	3	0	1	0

Table 2. Summary of Patients Treated with Coley's Toxins before 1940

Evaluation was restricted to those patients who were considered to be inoperable at the time of treatment, and who received no therapy other than the vaccine. Individual patient records are tabulated as follows: A, those making no beneficial response to the treatment; B, those making an initial response, but either known to relapse at any time or lost to follow-up in less than 5 years; C, those rendered free of disease, but lost to follow-up after at least 5, but less than 10, years; D, those rendered free of disease, but lost to follow-up after at least 10, but less than 20, years; E, those rendered free of any clinical evidence of disease for a period of time not less than 20 years. ¹Nauts, 1975c. ²Nauts and Fowler, 1969. ³Nauts, 1975b. ⁴Nauts *et al.*, 1953. ⁵Nauts, 1977. ⁶Fowler, 1968. ⁷Nauts, 1973. ⁸Nauts, 1975a. ⁹Fowler, 1969b. ¹⁰Nauts, 1984. ¹¹Fowler, 1969a.

Sarcomas have characteristic genomic landscape

1e 🔻 🛛 /	About 🔻	Licensing 🔻	Data Download 🔻	News 🔻 Hel	lp 🔻 Enter	search here				Lo
	Fusion »		EWSR1:FLI1							View in GRCh37 Ar
nes			EWSR1 ->FLI1							
Mutation	5' Partner Gene					3' Partner Gene				Mutation
ID	Gene Name	Last Observe Exon		Inserted Sequence	Gene Name	First Observed Exon	Inferred Breakpoint	Inserted Sequence	No. of Mutations	Frequency
COSF166	EWSR1	7	1112	-	FLI1	6	920	-	736	54.04%
COSF168	EWSR1	7	1112	-	FLI1	5	854	-	345	25.33%
COSF170	EWSR1	10	1364	-	FLI1	6	920	-	41	3.01%
COSF172	EWSR1	10	1364	-	FLI1	5	854	-	33	2.42%
COSF177	EWSR1	7	1112	-	FLI1	8	1046	-	15	1.1%
COSF181	EWSR1	7	1112	-	FLI1	7	986	-	9	.66%
COSF185	EWSR1	10	1364	-	FLI1	8	1046	-	4	.29%
COSF178	EWSR1	9	1331	-	FLI1	4	650	-	4	.29%
COSF184	EWSR1	Break poi	nt	Break poin	nt		986	-	3	.22%
COSF228	EWSR1	+		*			1094	-	3	.22%
COSF1303	EWSR1 NH	2 DHR	RBM - COOHN	H ₂ -1 AD E	TS-DBD	соон	986	-	2	.15%
COSF183	EWSR1	EWS (chromo	some 22)	FLI1 (chromos			986	-	1	.07%
COSF205	EWSR1		t(11;22)			920	-	1	.07%
COSF179	EWSR1		¥				?	-	165	12%
		NH ₂ -			соон				1362	100%
				ETS-DBD						
			EWS-FLI1 t(11;22	!) (q24;q12)						
Contact	us Lega									
	b	EW: YK-4-279	SUIC NH2 Activation domain DBD domain GGAA RHA COOH FLI1	Pol II						

Fusion neoantigens are similar to *Streptococci* native protein epitopes!

Cosmic » Fusion » Summary » <u>EWS</u>	<u>R1 : FLI1</u>	View in GRCh37 Archive
Summary Related Breakpoints Samples		
Mutation Id	COSF166	2
Туре	This fusion structure is derived from the range of fusion mRNAs reported.	-
Translocation Name	EWSR1{ENST00000397938}:r.1_1112_FLI1{ENST00000429175}:r.920_3051	
Fusi	on Transcript Structures	
EWSR1		
COSF166		
FLI1		

Cosmic » Fusion » Summary » <u>EWS</u>	<u>R1 : FLI1</u>	View in GRCh37 Archive
Summary Related Breakpoints Samples		
Mutation Id	COSF168	2
Туре	This fusion structure is derived from the range of fusion mRNAs reported.	-
Translocation Name	EWSR1{ENST00000397938}:r.1_1112_FLI1{ENST00000429175}:r.854_3051	
Fusio	n Transcript Structures	
EWSR1		
COSF168		
FLI1		

Many thanks to lab members and collaborators

Bob Schreiber

Matt Gubin Jeff Ward (WashU)

Ben Zeskind Fadi Towfic (Immuneering)

Alex Predeus Katya Loginicheva Alexey Sergushichev Vicky Lampropoulou Mike Orzel Anton Alexandrov Pavel Zakharov

Artyomov Lab members

(and associated members)