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Nuclear Fusion

Deuterium Helium
&

Energy

Tritium Neutron

ITER: 50 MW input, 500 MW output

First plasma: 2019 (?)

www.iter.org
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Plasma Heating for Fusion Devices
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Heating beams
ITER: 500 keV/amu
JET: ~140 keV/amu

Diagnostic beams
ITER: 100 keV/amu NIST
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Neutral Beam Spectroscopy in Fusion Devices
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Major reaction channels:

Ho + {e,H", X} - H* + {e,H* X} - hw (1)

Ho+ X; = H* + X', — hw (2)

H* + Hy — H* + H* — hw (3)

(1) beam-emission spectroscopy (BES) and
motional Stark effect (MSE)

(2) Charge exchange on impurities (CXRS)

(3) CXRS of fast ion diagnostics and fuel ion
ratio measurements (ACX: active charge

exchange)
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* Overlapping
| components of MSE
O spectra (E, E/2, E/3)
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« Ratios among - and o- lines within the multiplet are well defined
and should be constant.
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Charge eXchange Recombination
Spectroscopy (CXRS)
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V, ~ 200 km/s
tag=4 us
tsa= 40 ps

Two-zone model

Beam-free zone

Zone 1

Beam zone (ACX)

Goal: analyze time-dependent kinetics

of Ar impurities under CXRS conditions
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Collisional-radiative model

- Atomic states « Electron collisions
o [Li] 14 terms 1s°nl?L, n<5 = Flexible Atomic Code (FAC)
> [He] 19 terms 1snl 33L, n < 4 for excitations from 1s
= [H] 210 nl terms, n < 20 and = Van Regemorter
30 n-bundled Rydberg states, = ATOM for [Li] and [He]
21 <n <050  Proton collisions
« Radiative transitions > Impact-parameter method
= Cowan + FAC - agrees well with the

available close-coupling
results

» Charge exchange
= Classical Trajectory Monte

Time-dependent code NOMAD Carlo (Hung, Krstic &
Yu.Ralchenko and Y.Maron, JQSRT 71, Schultz) ST
609 (2001) Nutiﬂnstitute of

Standards and Technology
U.S. Department of Commerce

- Radiative recombination
= Rozsnyai & Jacobs (1988)




R
Strategy

- Steady-state condition w/ and w/o beam
- Time-dependent relaxation in a beam zone
- Complete time-dependent evolution

« TEXTOR

s N, = 5x108¥ cm3, T, = 2 keV
« ITER

s N, =10 cm3, T, = 20 keV
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No beam: populations of high-n states

A. Only electrons

B. A+ protons

C. B - excitations
from other n’s

5x1013 cm=3/2 keV

[ »L:;:J:::}:::I;:}:__L:_>

Relative populations

proton collisions
are responsible for
redistribution among
the nl excited states

14s 155 16s  17s I8 NIST
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Population flux analysis

w/o protons
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with protons
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Steady state for the beam zone
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W/o . T—2 keV, Ne —5 " 10 CI I l « Substantial change in nl distribution in the beam zone. N H
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Time-dependent relaxation
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*Very long relaxation time

*High-1 equilibrate by collisions (16u)
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Impurity entering and leaving the beam zone
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Full non-stationary model
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Motional Stark effect for H beam

« Hydrogen beam penetrates the plasma volume
« The induced electric field E=vxB mixes the spherical states and splits line

multiplets
AE pn-0e=0 << AE pnogero <<KAE ppse (%)
E . E=0 E#0
|
n2| I AEAHZO
AE -, : n,km
[nl k1 m] I
|
|
AE An>0 : AE An>0
,Good“ qguantum numbers :
n=n,+n,+|m|+1, n;, n,>0 (parabolic states) :
e
n — principal quantum number nJd n;km
k=n;-n, — electric quantum number NIST
. . . National Institute of
m — z-projection of orbital momentum Standards and Technology

U.S. Department of Commerce



Beam emission

6 T I T T —— =
:s ! | i 1) A CR model for the H beam:
I 5 oucx B | ot Major processes affecting level populations:
ol e e e ] *Interaction with plasma electrons
i \\ Interaction with plasma protons

SEA o i AR :
655 656 657 658 659 660 661 662

AT—— Can we do it for parabolic states?
Delabie E. et al. PPCF 52 125008 (2010)
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Cross sections for parabolic states,
part |

E

parabolic states o = /2 for MSE
nikim.

V

Radiative channel

T — components with Am=0 L
0 — components with Am= 1 ,. %/
nlm; — spherical states

Classical excitation: njlm;— njlm

Only one axis: along projectile velocity

There is another axis: along the induced electric field E Nuﬁm,ﬂ

Standards and Technology
U.S. Department of Commerce




Cross sections for parabolic states, part |l

Scattering amplitude between
parabolic states a = (nkm)

My,

Fo = <Wb

Transformation 1:
parabolic along z into
spherical along z

n-1 - Transformation 2:
Y okm = chwzyﬁmm spherical along z into

I=|m| \Vspherical along z’
I
| ™~
gpnlm — Z Dr(n)m 6linm'

m'=—I
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Transformation between the spherical and parabolic states

$m nkm
C Q\ II 4
wnkm _ Z | ﬂ)nlm' > |m| T’ 2
ieQ) 1
0
=1
-2
=3
Final cross section: 4
5 2 I I 0123 4
O-:‘< nikimilrlnikjmj >‘ = ZCiCjFaiJ(q) + ZCiCjFaiJ(q) +.. | number
Am'=2-n,—ny Am'=3-n,-n,
2 2
by /= bi ;=
+ ZCiCjFail(q) + ZCiCjFail(q)
Am'=n,+n,—3 Am'=n,+n,-2

For excitation from the ground state the expressions are still simple:

rir — % - % cos2(B)rap0 + % sin2(8)orap T cos(O)Re(p20)]  DENSIty Matrix elements
1. 1. k ]
O2+1 = 5 sin®(6) oap0 + Top1 (1 — 551112(6)) Py = ?J: me(q)Fm (q)dq
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Collisional-Radiative Code NOMAD in parabolic states

Time dependent collisional radiative model for non-Maxwellian
plasma applied for studies at EBIT and spectroscopy of fusion

plasmas
Ralchenko Yu V and Maron Y 2001 J. Quant. Spectr. Rad. Transf. 71 609

Full non-statistical simulations in parabolic m resolved states

The model is extended up to n=10 states including 220 magnetic
levels.

The cross sections are calculated up to Am,,,,,= 5 for first excited
states with n<6 and Am_,,,= 3 for other states. In total ~5-10° cross
sections where AOCC and GA data are used.

Level-crossing and ionization induced by electric field are included
for different values of electric field.

Electron collisions are based on the Van-Regermorter formula with
reccomended Gaunt factors (high precision is not required)

Collisional ionization from m levels of the same principal quantum

number is assumed to be the same

Energy diagramm of hydrogen atom, eV

1344

n=8

n=7

13.3F

n=6
13.2F

Hydrogen beam energy, keV. Magnetic field 5 T
40 100 250 500 1000

- 7

Electric Field, 10°V/cm

Time dependent
solution

Quasi-stR'ﬂEr

State National Institute of

Cam . mm‘§Commerce




_Populations of excitedstates |

10°

Relative populations of excited states
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Index of excited states

statistical
calculations

6 -5 4 -3 2 1 0 1 2 3 4 5 6
Displacement of H, components

Population of first excited states is much
closer to the coronal than to the Boltzmann
limit

Only for n=6 and n=7 the populations
approach statistical case

The states with m=0 have the highest
populations. The major channel of the
population remains the excitation from the
ground state and the cross sections with

Am=0,%1 are the strongest ones:
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Theory vs Experiment

* Experiment 1993

 W. Mandl et al. PPCF 35,1373 (1993)
*Solid: Z+=1

» Horizontal dashed: statistical limit

« Dashed w/ symbols: Z 4 = 2 (C°®")

Ratio between the spectral lines
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» Experiment 2010

» E. Delabie et al. PPCF 53, 125008 (2010)
«Solid: Z4=1

» Horizontal dashed: statistical limit

» Dashed w/ symbols: Z 4 = 2 (C°")

(2010)|
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