Kinetics of Neutral Beams in Fusion Plasmas: Charge-Exchange Recombination and Motional Stark Effect

<u>Yuri Ralchenko</u>

National Institute of Standards and Technology Gaithersburg, USA

ISAN, May 30 2011

Supported in part by the Office of Fusion Energy Sciences, U.S. Department of Energy

Collaborators

O. Marchuk (Juelich, Germany)

- R.K. Janev (Juelich, Germany)
- A.M.Urnov (Moscow, Russia)
- W.Biel (Juelich, Germany)
- E. Delabie (FOM, The Netherlands)
- D.R.Schultz (ORNL)

Fusion

Nuclear Fusion

ITER: 50 MW input, 500 MW output

First plasma: 2019 (?)

Plasma Heating for Fusion Devices

Heating beams ITER: 500 keV/amu JET: ~140 keV/amu Diagnostic beams ITER: 100 keV/amu TEXTOR: 50-100 keV/amu

Neutral Beam Spectroscopy in Fusion Devices

Major reaction channels:

$$H_0 + \{e, H^+, X_z\} \rightarrow H^* + \{e, H^+, X_z\} \rightarrow \hbar\omega (1)$$

$$H_0 + X_z \rightarrow H^+ + X^*_{z-1} \rightarrow \hbar \omega$$
 (2)

$$H^{+} + H_{0} \rightarrow H^{*} + H^{+} \rightarrow \hbar\omega (3)$$

 beam-emission spectroscopy (BES) and motional Stark effect (MSE)
Charge exchange on impurities (CXRS)
CXRS of fast ion diagnostics and fuel ion ratio measurements (ACX: active charge exchange)

$H_{\alpha}(n=3 \rightarrow n=2)$ spectrum from the JET tokamak

- Passive light from the edge
- Emission of thermal H⁺ and D⁺
- Cold components of CII Zeeman multiplet
- Overlapping components of MSE spectra (E, E/2, E/3)

Ratios among π - and σ - lines within the multiplet are well defined ulletand should be constant.

Charge eXchange Recombination Spectroscopy (CXRS)

 $Ar^{18+} + H \rightarrow Ar^{17+} + p$

CX goes into high *n*'s: $n \sim Z^{3/4}$

H-like Ar: n=14-15 at 428 nm n=15-16 at 523 nm

Goal: analyze time-dependent kinetics of Ar impurities under CXRS conditions

Collisional-radiative model

• Atomic states

- [Li] 14 terms $1s^2nl^2L$, $n \le 5$
- [He] 19 terms 1snl^{1,3}L, $n \le 4$
- [H] 210 *nl* terms, $n \le 20$ and 30 *n*-bundled Rydberg states, $21 \le n \le 50$
- Radiative transitions
 - Cowan + FAC
- Radiative recombination
 - Rozsnyai & Jacobs (1988)

• Electron collisions

- Flexible Atomic Code (FAC) for excitations from 1s
- Van Regemorter
- ATOM for [Li] and [He]
- Proton collisions
 - Impact-parameter method
 - agrees well with the available close-coupling results
- Charge exchange
 - Classical Trajectory Monte Carlo (Hung, Krstic & Schultz)

Time-dependent code NOMAD

Yu.Ralchenko and Y.Maron, JQSRT 71, 609 (2001)

Strategy

- Steady-state condition w/ and w/o beam
- Time-dependent relaxation in a beam zone
- Complete time-dependent evolution
- TEXTOR
 - $n_e = 5 \times 10^{13} \text{ cm}^{-3}, T_e = 2 \text{ keV}$
- ITER
 - $n_e = 10^{14} \text{ cm}^{-3}, T_e = 20 \text{ keV}$

No beam: populations of high-n states

Population flux analysis

GS eXcitation EXCitation Radiative Decay DeeXCitation Radiative Recombination

Steady state for the beam zone

•Charge exchange in the whole plasma

Time-dependent relaxation

Impurity entering and leaving the beam zone

Full non-stationary model

1000 cycles of 4e-5 s Equilibration time: Ground states are slow Excited states are very fast

Effective CX rescaled by:

$$\xi = \frac{\Delta t_{bz}}{\Delta t_{bz} + \Delta t_{bfz}}$$

20 steps of 0.002 s give the same ion populations

Motional Stark effect for H beam

- Hydrogen beam penetrates the plasma volume
- The induced electric field **E**=**v**×**B** mixes the spherical states and splits line multiplets

 $\Delta E_{\Delta n=0, E=0} << \Delta E_{\Delta n=0, E\neq 0} << \Delta E_{\Delta n>0} \quad (*)$

"Good" quantum numbers

 $n=n_1+n_2+|m|+1$, n_1 , $n_2>0$ (parabolic states)

n – principal quantum number

 $k=n_1-n_2$ – electric quantum number

m – z-projection of orbital momentum

Beam emission

Delabie E. et al. PPCF 52 125008 (2010)

CR model for the H beam:

Major processes affecting level populations: •Interaction with plasma electrons

Interaction with plasma protons

•Can we do it for parabolic states?

Cross sections for parabolic states, part II

Scattering amplitude between parabolic states $a \equiv (nkm)$

 $F_{ba} = \left\langle \psi_b \left| \hat{\Gamma} \right| \psi_a \right\rangle$

Transformation 1: parabolic along z into

spherical along z

Transformation 2: spherical along z into spherical along z'

$$\Rightarrow \varphi_{nlm} = \sum_{m'=-l}^{l} D_{m'm}^{(l)} \bigoplus \widehat{\varphi}_{nlm}$$

Final cross section:

$$\sigma = \left| < n_i k_i m_i |\hat{\Gamma}| n_j k_j m_j > \right|^2 = \left| \sum_{\Delta m' = 2 - n_a - n_b} c_i c_j F_{a_i}^{b_j}(\vec{q}) \right|^2 + \left| \sum_{\Delta m' = 3 - n_a - n_b} c_i c_j F_{a_i}^{b_j}(\vec{q}) \right|^2 + \dots + \left| \sum_{\Delta m' = n_a + n_b - 3} c_i c_j F_{a_i}^{b_j}(\vec{q}) \right|^2 + \left| \sum_{\Delta m' = n_a + n_b - 2} c_i c_j F_{a_i}^{b_j}(\vec{q}) \right|^2$$

For excitation from the ground state the expressions are still simple:

$$\sigma_{2\pm10} = \frac{1}{2}\sigma_{2s0} + \frac{1}{2}\cos^{2}(\theta)\sigma_{2p0} + \frac{1}{2}\sin^{2}(\theta)\sigma_{2p1} \mp \cos(\theta)Re(\rho_{2s0}^{2p0})$$
 Density matrix elements
$$\sigma_{20\pm1} = \frac{1}{2}\sin^{2}(\theta)\sigma_{2p0} + \sigma_{2p1}\left(1 - \frac{1}{2}\sin^{2}(\theta)\right)$$
 $\rho_{pq}^{rs} = \frac{k_{f}}{k_{i}}\int F_{pq}(\mathbf{q})F_{rs}^{*}(\mathbf{q})d\mathbf{q}$

states (4)

Standards and Technology U.S. Department of Commerce

Collisional-Radiative Code NOMAD in parabolic states

 Time dependent collisional radiative model for non-Maxwellian plasma applied for studies at EBIT and spectroscopy of fusion plasmas

Ralchenko Yu V and Maron Y 2001 J. Quant. Spectr. Rad. Transf. 71 609

- Full non-statistical simulations in parabolic *m* resolved states
- The model is extended up to n=10 states including 220 magnetic levels.
- The cross sections are calculated up to Δm_{max} = 5 for first excited states with n<6 and Δm_{max} = 3 for other states. In total ~5.10⁵ cross sections where AOCC and GA data are used.
- Level-crossing and ionization induced by electric field are included for different values of electric field.
- Electron collisions are based on the Van-Regermorter formula with reccomended Gaunt factors (high precision is not required)
- Collisional ionization from m levels of the same principal quantum number is assumed to be the same

- Population of first excited states is much closer to the coronal than to the Boltzmann limit
- Only for n=6 and n=7 the populations approach statistical case
- The states with m=0 have the highest populations. The major channel of the population remains the excitation from the ground state and the cross sections with Δm=0,±1 are the strongest ones:

ons

Theory vs Experiment

- Experiment 1993
- W. Mandl et al. PPCF 35,1373 (1993)

28

- Solid: Z_{eff} = 1
- Horizontal dashed: statistical limit
- Dashed w/ symbols: $Z_{eff} = 2 (C^{6+})$

- Experiment 2010
- E. Delabie et al. PPCF 53, 125008 (2010)
- Solid: $Z_{eff} = 1$
- Horizontal dashed: statistical limit
- Dashed w/ symbols: $Z_{eff} = 2 (C^{6+})$

