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Fusion 



Nuclear Fusion 

www.iter.org 

ITER: 50 MW input, 500 MW output 

First plasma: 2019 (?) 



Plasma Heating for Fusion Devices 

Heating beams 

ITER: 500 keV/amu 

JET: ~140 keV/amu 

Diagnostic beams 

ITER: 100 keV/amu 

TEXTOR: 50-100 keV/amu 



Neutral Beam Spectroscopy in Fusion Devices 

Major reaction channels: 

H0 + {e,H+,Xz} → H∗ + {e,H+,Xz} → ћω (1) 
 

H0 + Xz → H+ + X*
z-1 → ћω (2) 

 

H+ + H0 → H∗ + H+ → ћω (3)   

(1) beam-emission spectroscopy (BES) and 

motional Stark effect (MSE) 

(2) Charge exchange on impurities (CXRS) 

(3) CXRS of fast ion diagnostics and fuel ion 

ratio measurements (ACX: active charge 

exchange) 



Hα(n=3 → n=2) spectrum from the JET tokamak 

• Passive light from the 

edge 

• Emission of thermal 

H+  and D+   

• Cold components of 

CII Zeeman multiplet 

• Overlapping 

components of MSE 

spectra (E, E/2, E/3) 

• Ratios  among  π- and σ- lines within the multiplet are well defined 

and should be constant.  

Delabie E. et al. PPCF 52 125008 (2010) 



Charge eXchange Recombination 

Spectroscopy (CXRS)  
Ar18+ + H  Ar17+ + p 

Hung, Krstic and Schultz, CFADC-ORNL database 

CX goes into high n’s: 

n ~ Z3/4 

 

H-like Ar: 

n=14-15 at 428 nm 

n=15-16 at 523 nm 

Eb = 100 keV/u 

Ti = 20 keV 
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Vp ~ 200 km/s 

tAB  4 s 

tBA  40 s 

nb/n; Eb 

Goal: analyze time-dependent kinetics 

of Ar impurities under CXRS conditions 



Collisional-radiative model 

• Atomic states 

▫ [Li] 14 terms 1s2nl 2L, n  5 

▫ [He] 19 terms 1snl 1,3L, n  4 

▫ [H] 210 nl terms, n  20 and 

30 n-bundled Rydberg states, 

21  n  50 

• Radiative transitions 

▫ Cowan + FAC 

• Radiative recombination 

▫ Rozsnyai & Jacobs (1988) 

• Electron collisions 

▫ Flexible Atomic Code (FAC) 

for excitations from 1s 

▫ Van Regemorter 

▫ ATOM for [Li] and [He] 

• Proton collisions 

▫ Impact-parameter method 

 agrees well with the 
available close-coupling 
results 

• Charge exchange 

▫ Classical Trajectory Monte 

Carlo (Hung, Krstic & 

Schultz) 

Time-dependent code NOMAD 

Yu.Ralchenko and Y.Maron, JQSRT 71, 

609 (2001) 



Strategy 

• Steady-state condition w/ and w/o beam 

• Time-dependent relaxation in a beam zone 

• Complete time-dependent evolution 

 

• TEXTOR 

▫ ne = 5 1013 cm-3, Te = 2 keV 

• ITER 

▫ ne = 1014 cm-3, Te = 20 keV 

 



No beam: populations of high-n states 

A. Only electrons 

B. A + protons 

C. B - excitations 

from other n’s 

5x1013 cm-3/2 keV 

proton collisions 

are responsible for 

redistribution among 

the nl excited states 



T=2 keV, Ne=5·1013 cm-3 

n=16 

w/o protons GS eXcitation 

EXCitation 

Radiative Decay 

DeeXCitation 

Radiative Recombination 

nl 

influx 

outflux 

with protons 

Population flux analysis 



Steady state for the beam zone 

w/o: T=2 keV, Ne =5·1013cm-3 

w/  CX:   ε =2·10-5, Eb= 100 keV 

• Substantial change in nl distribution in the beam zone. 

• Proton collisions can not „wake up“ the high l sublevels 

• Statistical equilibrium is not achieved 

•Charge exchange in the whole plasma 



Time-dependent relaxation 

•Very long relaxation time 

•High-l equilibrate by collisions (16u) 



Impurity entering and leaving the beam zone 
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Full non-stationary model 

1000 cycles of 4e-5 s 

Equilibration time: 

Ground states 

  are slow 

Excited states 

  are very fast  

Effective CX rescaled by: 

bfzbz

bz

tt

t

20 steps of 0.002 s give 

the same ion populations 



Motional Stark effect for H beam 
• Hydrogen beam penetrates the plasma volume 
• The induced electric field E=v B mixes the spherical states and splits line 

multiplets 

[n, k, m] 

E


z 

„Good“ quantum numbers 

n – principal quantum number 

k=n1-n2 – electric quantum number 

m – z-projection of orbital momentum 

n=n1+n2+|m|+1,  n1, n2>0 (parabolic states) 

ΔE Δn=0,E=0 << ΔE Δn=0,E≠0 << ΔE Δn>0      (*) 

n1l 

ΔEΔn=0 

E=0 E≠0 

ΔEΔn=0 

n1km 

n2l 
n2km 

ΔE Δn>0 ΔE Δn>0 



Beam emission 

Delabie E. et al. PPCF 52 125008 (2010) 

CR model for the H beam: 

 

Major processes affecting level populations: 

•Interaction with plasma electrons 

•Interaction with plasma protons 

 

•Can we do it for parabolic states? 

 



Cross sections for parabolic states, 

part I 

 

parabolic states 

nikimi 

nilimi – spherical states 

Radiative channel 

nikimi→ njkjmj  

π – components with Δm=0 

σ – components with Δm=
 

1 

Classical excitation: nilimi→ njljmj 

Only one axis: along projectile velocity 

 

There is another axis: along the induced electric field E 

E


v


 = /2 for MSE 



Cross sections for parabolic states, part II 
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Scattering amplitude between 

parabolic states a  (nkm) 
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Final cross section: 

Transformation between the spherical and parabolic states  

For excitation from the ground state the expressions are still simple: 

Density matrix elements 

'nlm

i

inkm c



Calculation of the cross sections in parabolic 

states (4) 

black - AOCC (present results) 

green - GA(present results) 

dashed - Born approximation 

blue - SAOCC Winter TG, Phys. Rev. A 2009 80 032701 

orange - SAOCC Shakeshaft R Phys. Rev. A 1976  18 1930 

red - EA  Rodriguez VD and Miraglia JE J. Phys. B: At. Mol. Opt. 

Phys. 1992 25 2037    

blue      - AOCC (present results) 

green    - GA (present results) 

dashed  - Born approximation 

orange   - CCC Schöller O et al. J. Phys B.: At. Mol. Opt. Phys. 

19 2505 (1986) 

red - EA  Rodriguez VD and Miraglia JE J. Phys. B: At. Mol. Opt. 

Phys. 1992 25 2037    



Collisional-Radiative Code NOMAD in parabolic states 

• Time dependent collisional radiative model for non-Maxwellian 

plasma applied for studies at EBIT and spectroscopy of fusion 

plasmas 

Ralchenko Yu V and Maron Y 2001 J. Quant. Spectr. Rad. Transf. 71 609 

• Full non-statistical simulations in parabolic m resolved states 

• The model is extended up to n=10 states including 220 magnetic 

levels. 

• The cross sections are calculated up to Δmmax= 5 for first excited 

states with n<6 and Δmmax= 3 for other states. In total ~5·105 cross 

sections where AOCC and GA data are used. 

• Level-crossing and ionization induced by electric field are included 

for different values of electric field. 

• Electron collisions are based on the Van-Regermorter formula with 

reccomended Gaunt factors (high precision is not required) 

• Collisional ionization from m levels of the same principal quantum 

number is assumed to be the same   

Time dependent 

solution 

 

Quasi-steady 

state 

calculations 



Populations of excited states 

statistical 

calculations 

• Population of first excited states is much 

closer to the coronal than to the Boltzmann 

limit 

• Only for n=6 and n=7 the populations 

approach statistical case 

• The states with m=0 have the highest 

populations. The major channel of the 

population remains the excitation from the 

ground state and the cross sections with 

Δm=0,±1 are the strongest ones: 

650 

540 

320 

760 



Theory vs Experiment 

(1993) 

(2010) 

• Experiment 1993 

• W. Mandl et al. PPCF 35,1373 (1993) 

• Solid: Zeff = 1 

• Horizontal dashed: statistical limit 

• Dashed w/ symbols: Zeff = 2 (C6+) 

• Experiment 2010 

• E. Delabie et al. PPCF 53, 125008 (2010) 

• Solid: Zeff = 1 

• Horizontal dashed: statistical limit 

• Dashed w/ symbols: Zeff = 2 (C6+) 
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