
A∞-STRUCTURES AND THETA SERIES

ALEXANDER POLISHCHUK

A∞-algebras
Appeared in the work of Stasheff in 1963 as generalizations of dg-algebras.

(A∞-algebras are also called strongly homotopy associative algebras). Cur-
rently, are popular in math/physics related to string theory.
Definition. A dg-algebra over a field k is a Z-graded associative k-algebra
A with a differential d of degree +1 such that the Leibnitz identity holds:

d(a · b) = d(a) · b+ (−1)deg aa · d(b).

Definition. An A∞-algebra is a Z-graded k-vector space A equipped with
a collection of maps

mn : A⊗n → A, n ≥ 1 of degree 2− n, such that∑
n=i+j+k

(−1)i+jkmi+k+1(id⊗i⊗mj ⊗ id⊗k) = 0 for n ≥ 1.

In other words, we take the sum (with signs) of the expressions of the
form

a_3

a_1

a_2

m_j

m_l

For example, for n = 1 and n = 2 this gives

m1(m1(a)) = 0, m1(m2(a, b)) = m2(m1(a), b)±m2(a,m1(b)),

i.e., m1 is a differential of degree +1, and m2 satisfies the Leibnitz identity.
For n = 3 the A∞-constraint states that the product m2 is associative up

to an explicit homotopy:

m2(m2(a, b), c)−m2(a,m2(b, c)) = m1(m3(a, b, c))

±m3(m1(a), b, c)±m3(a,m1(b), c)±m3(a, b,m1(c)).

Therefore, the cohomology space H∗(A,m1), with the product induced
by m2, is an associative algebra.
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TheA∞-constraint simplifies in the casem1 = 0. For example, the n = 4
case will look like

m3(a, b, c) · d± a ·m3(b, c, d) =

m3(a · b, c, d)−m3(a, b · c, d) +m3(a, b, c · d).

The n = 5 case becomes

m3(m3(a, b, c), d, e)±m3(a,m3(b, c, d), e)±m3(a, b,m3(c, d, e)) =

m4(a, b, c, d) · e± a ·m4(b, c, d, e) +m4(a · b, c, d, e)− . . .

Kadeishvili’s Theorem (1982)
Let (B, d) be a dg-algebra. Then there is a natural structure of an A∞-

algebra on A = H∗(B, d) with m1 = 0, such that A and B are equivalent
as A∞-algebras.

A morphismA→ B between twoA∞-algebras is given by a collection of
maps fn : A⊗n → B of degree 1−n, satisfying certain system of equations
involving products on A and B. There is also a notion of composition of
such morphisms, of homotopy between morphisms, etc.

Explicit construction of equivalence in Kadeishvili’s Theorem requires
a choice of representatives for all cohomology classes given by a k-linear
embedding A ↪→ B, and also a choice of a projector B → A (Merkulov,
Kontsevich-Soibelman)

Kadeishvili’s Theorem explains the appearance of the Massey products
on the cohomology of dg-algebras: these are “shades" of the A∞-structure.
The simplest triple Massey product is defined for a triple (a, b, c) in A =
H∗(B, d) such that ab = 0 and bc = 0. In this case MP (a, b, c) is a coset
modulo

Adeg a+deg b−1 · c+ a · Adeg b+deg c−1 ⊂ Adeg a+deg b+deg c−1,

defined as follows: choose representative ã, b̃ and c̃ in ker(d) ⊂ B. Then
ãb̃ = d(x), b̃c̃ = d(y) for some x, y ∈ B. Now set MP (a, b, c) to be
coset containing the class of xc̃− (−1)deg aãy ∈ ker(d). The same coset is
obtained from the element m3(a, b, c).

In fact, Massey products can be viewed as homotopy invariants of A∞-
structures. For example, if m1 = 0 and m2 is fixed then a homotopy could
change m3 to

m′3(a, b, c) = m3(a, b, c) + f2(a, b) · c± a · f2(b, c)

+ f2(a · b, c)− f2(a, b · c)

A∞-categories
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Similarly to A∞-algebra can define A∞-categories. Higher products will
look like

Hom(F0, F1)⊗ Hom(F1, F2)⊗ . . .⊗ Hom(Fn−1, Fn)
mn→ Hom(F0, Fn).

E.g., m1 is the differential of degree 1 on morphism spaces. Taking coho-
mology with respect to m1 get a usual category. Analogue of Kadeishvili’s
theorem holds in this setting: starting from a dg-category one gets an A∞-
structure on the cohomology category.
Example. Derived category D(A) of an abelian categoryA is the localiza-
tion of the category of complexes overAwith respect to quasi-isomorphisms,
i.e., chain maps inducing isomorphism on cohomology. In the case when
A has enough injective objects, using injective resolutions, we can equip
D+(A) with an A∞-structure (canonically up to equivalence).

Fukaya category is an A∞-category attached to a symplectic manifold
(M,ω). Roughly speaking, objects are Lagrangian submanifolds L ⊂ M
(submanifolds of M of dimension dimM/2 with ω|L = 0). Morphisms
from L1 to L2 are elements of the space ⊕p∈L1∩L2C[p], provided L1 and L2

are transversal.
The productsmn are determined by counting (pseudo-)holomorphic disks:

mn([p1], . . . , [pn]) =
∑

p0,φ:(D,∂D,(ti))→(M,∪Li,(pi))

± exp(−
∫
D

φ∗ω)[p0].

L

L
L

L

L

2
1

4

0

3

Homological Mirror Conjecture (HMC)
Kontsevich conjectured in 1994 an equivalence of the Fukaya category

F(X) of a Calabi-Yau manifoldX with theA∞-enhancement of the derived
category D(Y ) of coherent sheaves on the mirror dual manifold Y .

At present we have a lot of evidence for this conjecture.
One can weaken the conjecture by considering the usual categories associ-
ated with the above A∞-categories. The hardest known case of the weak
HMC is that of the smooth quartic surface in P3 (Seidel 03).

Now we will discuss the simplest case of the HMC, namely, that of a
2-torus.
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Let T = R2/Z2 with the symplectic form tdx∧ dy. Let L1, L2 and L3 be
geodesics circles on T (i.e., images of lines of rational slope). To calculate
m2 : Hom(L1, L2)⊗Hom(L2, L3)→ Hom(L1, L3) in F(T ) have to count
holomorphic triangles bounded by L1, L2, L3.

L1

L2

L3

L3

L3

p1

p2

p3

Computing the areas of the triangles we obtain that the coefficient of [p3]
in m2([p1], [p2]) has form∑

n∈Z

exp(−(an+ b)2t), where a ∈ Q, b ∈ R.

Hence, the coefficients can be expressed in terms of the function

θ(q, z) =
∑
n∈Z

qn
2/2zn

for q = exp(−at), a ∈ Q.
This is famous theta function. For fixed q it satisfies the following quasi-

periodicity condition in z:

θ(qz) = q−1/2z−1θ(z).

This means that it can be viewed as a global section of some algebraic line
bundle over the elliptic curve C∗/qZ = C/(Z + it

2π
Z).

More generally, morphisms between vector bundles on an elliptic curve
have canonical bases (as follows from classification of such bundles by
Atiyah, and from the classical theory of theta functions). Matrix coefficients
of the products m2 with respect to these bases can be computed explicitly
in terms of θ(qa, z), for a ∈ Q.

Elaborating on this we proved
Theorem(P-Zaslow 98) Weak HMC is true for 2-tori, i.e, the Fukaya cate-
gory of a 2-torus is equivalent to the derived category of coherent sheaves
on an elliptic curve.
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Our proof uses the fact that in this case every object of the derived cate-
gory is the direct sum of its cohomology sheaves, every sheaf is the direct
sum of sheaves supported at points and vector bundles. Together with the
Serre duality Ext1(F,G) ' Hom(G,F )∗ this allows to reduce all compu-
tations to the composition of morphisms between vector bundles. So it all
boils down to the addition theorem for theta functions.

What about higher Fukaya products? Here is an example:

L0

L2

L2

L2

L1 L3L3 L3

The coefficients of this triple product are of the form∑
m≥0,n≥0

q(m+a)(n+b) −
∑

m<0,n<0

q(m+a)(n+b).

Thus, we get values of the Kronecker function

F (q, z, w) =
∑

m≥0,n≥0

qmnzmwn −
∑

m<0,n<0

qmnzmwn,

where |q| < |z|, |w| < 1. In fact, the triple product we considered is an ex-
ample of a univalued triple Massey product. Computing the corresponding
Massey product for the derived category of an elliptic curve we get a certain
ratio of theta-functions. So the HMS predicts the identity:

F (z, w) = c(q) · θ11(zw)

θ11(z)θ11(w)
,

where θ11(z) = θ(−q−1/2z). Such an identity indeed was discovered by
Kronecker in 1881.

It turned out that to prove the strong HMC (with higher products) for an
elliptic curve one doesn’t really have to know that much about higher prod-
ucts (but one has to understandm2 really well). A cohomology computation
shows that the A∞-structure on a large subcategory of the derived category
of the elliptic curve is determined by m2 almost uniquely - up to homotopy
and certain rescaling. This leads to
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Theorem (P 2000) Strong HMS is true for the subcategory of the Fukaya
category of the 2-torus corresponding to nonvertical lines of rational slope:
this A∞-category is equivalent to the A∞-subcategory of bundles.

Remark. To deal with the entire Fukaya category of the 2-torus one has to
add torsion sheaves on the derived category side.

As an application of the HMS we can interpret certain interesting q-series
as triple Massey products in the derived category of the elliptic curve. These
series are called indefinite theta series because they have form∑

m≥0,n≥0

f(m,n)qQ(m,n) −
∑

m<0,n<0

f(m,n)qQ(m,n),

where Q(m,n) = am2 + 2bmn + cn2 is an indefinite quadratic form with
a, b, c > 0 (i.e., b2 > ac).
Theorem (Pasol-P 04) The above series comes from some univalued Massey
product on the elliptic curve if and only if the corresponding sums along all
horizontal and vertical lines vanish:∑

m

f(m,n0)qQ(m,n0) =
∑
n

f(m0, n)qQ(m0,n) = 0.

Generalizations of Kronecker’s identity coming from the HMS:
±∑

(−1)m+nq2mn+ m2+m+n2+n
2 =

∏
(1− qn)2 = q−

1
12η(q)2

— this was also obtained by Kac-Peterson using representation theory;
±∑

m+n odd

(−1)
m+n−1

2 q
m2+6mn+3n2−1

2 =
∏

(1 + qn)(1− q2n)(1− q3n)(1 + q6n).

Our series can be rewritten as linear combinations of Hecke’s indefinite
theta series:

ΘΛ(q) =
∑

λ∈(Λ+c)∩C/G

sign(λ)qQ(λ),

where (Λ, Q) is a rank-2 indefinite lattice, c ∈ Λ ⊗ Q, G ⊂ Aut+(Λ, Q).
This leads to a geometric interpretation of such series. In particular, we
hope to resolve some questions raised by Hecke about linear relations be-
tween his series.
Triple products and Yang-Baxter equations (YBE)

Quantum YBE (QYBE) for R ∈ A⊗ A, where A = Mat(N,C):

R12R13R23 = R23R13R12,

where R12 = R⊗ 1 ∈ A⊗ A⊗ A, etc.
Spectral parameter: replace Rij with R(vi − vj).

Unitarity condition: RR21 = 1⊗ 1.
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Came from exactly solvable two-dimensional lattice models. Plays an
important role in Drinfeld’s theory of quantum groups.

If R(h) is the deformation of the trivial solution:

R(h) = 1⊗ 1 + hr + . . .

then r satisfies the Classical YBE (CYBE):

[r12, r13]− [r23, r12] + [r13, r23] = 0,

and the unitarity r21 = −r (as before, rij = rij(vi − vj)).
It turns out that the triple products on the elliptic curves corresponding

to the quadruple of objects (E1,Op1 , E2,Op2), where E1 and E2 are stable
vector bundles from the same component of the moduli space, p1 and p2 are
points, give solutions of the Associative YBE (AYBE):

r12(−u′)r13(u+ u′)− r23(u+ u′)r12(u) + r13(u)r23(u′) = 0.

Namely, using natural bases in the spaces Hom(Ei,Opj
) and Serre dual-

ity we can write the triple product as

m3 : V ⊗ V ∗ ⊗ V → V, or equivalently r : V ⊗ V → V ⊗ V.
The equation on r comes from the A∞-constraint for n = 5. Also, get the
unitarity: r21(−u) = −r(u).

Taking limit as u→ 0 of a solution of the AYBE and projecting to trace-
less matrices we get solutions of the CYBE (provided the limit exists).
Natural questions: 1) which sln-solutions of the CYBE lift to the AYBE? 2)
What is the relation to the QYBE?

Consider nondegenerate unitary solutions of the AYBE of the form

r(u) =
1⊗ 1

u
+ r0 + ur1 + . . .

Let r0 be the projection of r0 to sln.
Theorem (P 06) (i) In this situation r0(v) is a nondegenerate solution of the
CYBE, so it falls within Belavin-Drinfeld classification: it is either rational,
or trigonometric, or elliptic.
(ii) If r0(v) has a period (=not rational) then r(u) satisfies the QYBE.
(iii) The only elliptic solutions are those coming from m3 on elliptic curve
(given by Belavin’s elliptic R-matrix).
(iv) There is a classification of trigonometric solutions in terms of combi-
natorial data similar to Belavin-Drinfeld triples.

It turned out that not all nondegenerate trigonometric solutions of the
CYBE can be lifted to the AYBE (Schedler). Also, not all trigonometric
solutions of the AYBE can be obtained from m3 on nodal degenerations of
elliptic curves.
Problems
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What geometric data is responsible for all trigonometric solutions of the
AYBE?

Compute the superpotential for the elliptic curve (generating series for all
higher products).

Investigate the A∞-structure for higher genus curves. E.g., considering
triple Massey products for the quadruple of objects (OC ,Op1 , L,Op2), where
L is a line bundle of degree g − 1, one obtains Fay’s trisecant identity for
theta functions on the Jacobian of C (P 03).
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