

Attosecond Physics: A "Spin-Off" of Strong Field (Intense Laser) Physics

Anthony F. Starace

The University of Nebraska, Department of Physics and Astronomy, 208 Jorgensen Hall, Lincoln, NE 68588-0299, U.S.A.

General References:

F. Krausz and M. Ivanov, Rev. Mod. Phys. **81**, 163 (2009)

http://www.attoworld.de/Home/attoworld/

Lincoln Location

Map of the U.S.A.

University of Nebraska Campus: Summer Evening

University of Nebraska Campus: Fall Morning

University of Nebraska Campus: Winter Scene

University of Nebraska Campus: Spring Scene

Outline

Motivation

- **Background:** The Development of Intense Laser Fields
- Key Results of Strong Field Physics
- Ultrafast Processes: The Realm of Attosecond Physics
- Few-Cycle, Intense Attosecond Pulses: Nonlinear Attosecond Physics
- Concluding Remarks

Motivation

Key Goals of Attosecond Physics: Understand and control ultrafast atomic and molecular processes.

Key requirements:

- Laser pulses must be ultrashort, i.e., shorter than the timescale of atomic and molecular processes
 - *Partial Solution*: optically compress the laser pulses
 - Key Limitation: Ti:sapphire lasers (800 nm) have a period of 2.7 fs
- Laser electric fields must be comparable in strength to those within atoms and molecules, i.e., so that such processes can be controlled
 - *Key problem*: intense laser fields can destroy optical components!
 - Solution: chirped pulse amplification (CPA)

Background: The Development of Intense Laser Fields

Historical Overview of Increases in Laser Intensities

Chirped Pulse Amplification (CPA)

Geometry of Intense Laser Ionization of a Highly Charged Ion Target

[S.X. Hu and A.F. Starace, Phys. Rev. Lett. 88, 245003 (2002)]

J.D. Gillaspy, JPB 34, R93 (2001): "Any charge state of any ion can be produced."

Illustration of Electron Energy Gain Following Ionization of V^{22+}

[S.X. Hu and A.F. Starace, Phys. Rev. Lett. 88, 245003 (2002)]

 $I=8 imes 10^{21} ext{ W/cm}^2, \lambda=1054 ext{ nm}, 15$ -cycle laser pulse, $ext{w}_0=10$ Vpt $ext{max}$ h State University, Russia, 25 June 2010 – p.14/??

Key Results of Strong Field Physics

3 Step Scenario

Key laser-atom processes: above threshold ionization (ATI) and high-order harmonic generation (HHG)

[M.V. Frolov, A.V. Flegel, N.L. Manakov, and A.F. Starace, J. Phys. B 38, L375 (2005)]

Plateau structure in ATI/ATD spectra, with cutoff near $E_c pprox 10 U_p$

Plateau structure in HHG spectra, with cutoff near

 $N_c \hbar \omega \approx |E_0| + 3.17 U_p, U_p = \frac{e^2 F^2}{4m\omega^2}, \quad E_0 = -\frac{\hbar^2 \kappa^2}{2m} =$

binding energy of the initial state

Ultrafast Processes: The Realm of Attosecond Physics

Time Scales

Time Scales

Generation of a Single Atto Pulse

T. Pfeifer et al, Optics Letters 31, 975 (2006)

Two counter-propagating, circularly-polarized laser pulses

F. He, C. Ruiz, and A. Becker, Optics Letters 32, 3224 (2007)

Electronic Excitation Transport in a

Biomolecule (R.D. Levine and J.-F. Remacle)

Atomic Scale Transport in Solids

D. M. Villeneuve, Nature 449, 997 (2007)

Temporal Development of an Auger

Process

M. Drescher et al, Nature 419, 803 (2002)

Few-Cycle, Intense Attosecond Pulses: Nonlinear Attosecond Physics

Voronezh State University, Russia, 25 June 2010 - p.27/??

Ultrafast Science

$$\ddot{x} = -E_L(t),$$

$$E_L(t) = -\frac{dA_L(t)}{dt},$$

$$v(\infty) = v(t_0) + A_L(\infty) - A_L(t_0) = v_0 - A_L(t_0),$$

$$\Delta v = -A_L(t_0),$$

$$W(t) = \frac{1}{2}v^2(t),$$

$$\Delta W(t_0) \approx v_0 \Delta v = -v_0 A_L(t_0).$$

Attosecond streaking

Final electron (a) Final electron energy [eV] (c) $\Delta W(t) = -v_0 A_{\rm L}(t)$ energy [eV] 85 85 Mo/Si mirror $E_{\rm L}(t)$ 75 $\cdots W_0$ 75 ····· *W*₀ 65 65 ħΩ_x Time dN/dW dN/dW (a) Electron kinetic energy [eV] Vector potential, -A_L(t) [fsMV/cm] $\Delta W(t) = -v_0 A_{\rm L}(t)$ 85 20 10 75 0 -10 65 --20 0 Delay [fs] XUV pulse -4 4 8

Few-Cycle Attosecond Pulses

G. Sansone et al., Science **314**, 443 (2006).

"The availability of singleisolated cycle attosecond pulses opens the way to regime in ultrafast new **a** physics, in which the strongelectron dynamics in field atoms and molecules is driven by the electric field of the attosecond pulses rather than by their intensity profile." The CEP of the Attosecond **Pulse Matters!**

E. Goulielmakis et al., Science 320, 1614 (2008).

Ionization probability for the H atom by a linearly polarized pulse.

[E. A. Pronin, A. F. Starace, M. V. Frolov and N. L. Manakov, Phys. Rev. A 80, 063403 (2009)]

Solid Line: $\alpha = 0$,

Dashed Line: $\alpha = \pi$, Inset Panels: Vector Potential $\mathbf{A}(t)$

Results for a Single Attosecond Pulse Nebraska

Intensity Dependence of the CEP-Induced Asymmetries

[L.Y. Peng, E.A. Pronin, and A.F.Starace, New J. Phys. 10, 025030 (2008)]

 $P_t \equiv P_- + P_+ \propto I^{1.0}; \quad P_d \equiv P_- - P_+ \propto I^{1.5};$ $R \equiv P_d / P_t \propto I^{0.5}$

Concluding Remarks

- The capability of intense laser physics to produce high-order harmonics has led to the ability to produce single, few cycle pulses of attosecond duration.
- The determination of the time scales of atomic, molecular, and condensed matter processes has been achieved.
- **Control of such processes** is just beginning.
- Production of intense attosecond pulses in the future will open up a new regime: non-linear attosecond physics.